Aufbau einer Vakuumapparatur zur Spektroskopie dünner molekularer Schichten auf ultradünnen Glasfasern

Olga Rehband

vorgelegt bei
Prof. Dr. Arno Rauschenbeutel
Institut für Physik der Johannes Gutenberg-Universität Mainz
18. Februar 2009
1. Gutachter: Prof. Dr. Arno Rauschenbeutel
2. Gutachter: Prof. Dr. Klaus Wendt
Inhaltsverzeichnis

Einleitung 1

1 Spektroskopie mit ultradünnen Glasfasern 3
 1.1 Ultradüne Glasfasern 4
 1.1.1 Herstellung .. 5
 1.1.2 Modenpropagation 6
 1.1.3 Profil der Übergänge 8
 1.2 Absorbanz ... 10
1.3 Optimaler Faserdurchmesser 13

2 Spektroskopie von PTCDA an Luft 15
 2.1 Das PTCDA-Molekül 15
 2.2 Absorptionsmessungen 18
 2.2.1 Versuchsaufbau 18
 2.2.2 Versuchsdurchführung 19
 2.2.3 Optimierung der Heizquelle 24
 2.3 Zusammenfassung und Optimierung des Versuchsaufbaus 25

3 Aufbau der Vakuumapparatur 27
 3.1 Gasfluss in einem Vakuumsystem 27
 3.1.1 Saugvermögen und Sangleistung 27
 3.1.2 Fluss .. 28
 3.1.3 Strömungsleitwerte 30
 3.1.4 Leckrate .. 32
 3.2 Vakuumsystem .. 32
 3.2.1 Differentielles Pumpen 35
 3.3 Hauptkammer ... 38
 3.3.1 Quarzmikrowaage 41
 3.3.2 Fluoreszenzfaser 41
 3.3.3 Kamera-Objektiv-Kombination 42
 3.4 Ofenkammer .. 44
 3.4.1 Effusiver Molekülstrahl 45
 3.4.2 Knudsen-Zelle 46
4 Spektroskopie von PTCDA im Vakuum 49
4.1 Inbetriebnahme der Vakuumapparatur 49
 4.1.1 Einbau der ultradünnen Glasfaser 49
 4.1.2 Evakuieren ... 50
 4.1.3 Lecks .. 50
 4.1.4 Ausheizen ... 51
 4.1.5 Knudsen-Zelle .. 52
4.2 Erste Messungen in der Vakuumapparatur 53
 4.2.1 Absorbanzspektren 54
 4.2.2 Vorteile des Vakuumaufbaus 57
 4.2.3 Einfluss der Molekülzahl 59
 4.2.4 Faser säubern 61

Zusammenfassung und Ausblick 63

A Komponenten des Vakuumsystems 65
 A.1 Bemaßung des Vakuumsystems 69
Einleitung

Die Oberflächenспектroskopie wird mit Perylen-3,4,9,10-tetra-carbonsäure-dianhydrid (PTCDA) Molekülen als Modelsystem durchgeführt. Aufgrund der Stabilität an Luft, der hohen Quantenausbeute und der guten Kenntnis der optischen und elektronischen Eigenschaften ist dieses Molekül sehr gut für Experimente im Vakuum und an Luft geeignet.

Kapitel 1

Spektroskopie mit ultradünnen Glasfasern

Die Grundidee der Spektroskopie mit evaneszenzten Feldern beruht auf der Totalreflexion eines Lichtstrahls an der Grenzfläche zweier Medien mit unterschiedlichen Brechungsindizes. Dieser wird beim Übergang von einem optisch dichteren in ein optisch dünneres Material in Abhängigkeit von seinem Einfallsinkel gebrochen oder vollständig reflektiert. Selbst bei perfek-
KAPITEL 1. SPEKTROSKOPIE MIT ULTRADÜNNEN GLASFASERN

Abbildung 1.1: Lichtführung basierend auf dem Prinzip der Totalreflexion. (a) Entstehung des evaneszenten Feldes in Wellenleitern. (b) Glasfasern bestehen aus einem Kernglas (Monomode: Ø 5 μm bis 10 μm, Multimode: bis 200 μm), Mantelglas (Dicke: 50 μm bis 150 μm), beide aus hochreinem Quarzglas (SiO₂). Zum Schutz des Glases dient eine Beschichtung mit einer Stärke von ca. 50 μm bis 100 μm.

1.1 Ultradünne Glasfasern

Eine größtmögliche Wechselwirkung des geführten Lichtes mit der Materie kann erzielt werden, indem geringere Faserkerndurchmesser im aktiven Bereich verwendet werden. Dafür wird die Glasfaser an der zu verjüngenden Stelle erhitzt, und gleichzeitig wird an den Faserenden gezogen. Beim Ziehprozess wird die Ausdehnung des Korns im Vergleich zum Gesamtfaser-
1.1. ULTRADÜNNLE GLASFASERN

durchmesser vernachlässigbar klein, so dass das Mantelmaterial den neuen Kern bildet und die umgebende Luft die Rolle des Mantels übernimmt. Diese Methode ermöglicht die Herstellung von Fasern, deren Durchmesser weniger als die Wellenlänge \(\lambda \) des geführten Lichtes beträgt.

\[I_\lambda^2 (\text{nW}) = \frac{d}{\lambda} = 0.506 \]

\[I_\lambda^2 (\text{nW}) = 1 \]

\[I_\lambda^2 (\text{nW}) = 0.360 \]

\[\text{Abbildung 1.2:} \text{ Intensitätsverlauf des Lichtes innerhalb (rot) und außerhalb (blau) einer ultradünnen Glasfaser. Die Intensität, in Einheiten von Nanowatt pro } \lambda^2, \text{ ist als Funktion des Abstandes } d, \text{ in Einheiten von } \lambda, \text{ von der Faseroberfläche dargestellt.} \]

Bei solch geringen Durchmessern lassen sich wegen des sehr kleinen Querschnitts schon für geringe Eingangsleistungen hohe Intensitäten an der Faseroberfläche erzielen, da ein großer Anteil der geführten Lichtleistung an der Faseroberfläche in Form eines evaneszenten Feldes propagiert. Beispielhaft ist in Abb. 1.2 der radiale Intensitätsverlauf der Grundmode HE_{11} (siehe Kap. 1.1.3) innerhalb und außerhalb der Faser bei einer Leistung von 1 nW (Brechungsindex \(n = 1.46 \) für Glas, \(\lambda = 520 \) nm) für verschiedene Faserdurchmesser dargestellt. Bei einem Faserdurchmesser von 520 nm (d.h. \(d/\lambda = 1 \)) wird der größte Teil der Leistung innerhalb der Faser geführt, wobei die Intensität des evaneszenten Feldes an der Faseroberfläche sehr gering ist. Verringert man den Faserdurchmesser auf insgesamt 263 nm (d.h. \(d/\lambda = 0.506 \)), steigt die Intensität auf der Faseroberfläche auf ein Maximum an. Bei weiterer Verringerung des Durchmessers auf einen Wert von 187 nm (d.h. \(d/\lambda = 0.36 \)), tritt das Lichtfeld immer weiter aus der Faser aus und ein großer Teil der Leistung wird außerhalb der Faser geführt. Allerdings nimmt sowohl die Intensität auf der Oberfläche als auch innerhalb des Kerns stark ab. Diese Darstellung ist unter Vernachlässigung der schwachen Abhängigkeit des Brechungsindexes von der Wellenlänge für alle Wellenlängen gleich.

1.1.1 Herstellung

Ultradünnle Glasfasern mit Durchmessern von weniger als 1 \(\mu \)m lassen sich durch Erhitzen und Strecken mit Hilfe einer Faserziehanlage, die im Rahmen der Doktorarbeit von Florian Warken [9] konstruiert wurde, herstellen.
Dies erfordert hochpräzise Abläufe, um reproduzierbar homogene Fasern zu erhalten.

Für die Herstellung einer ultradünnen Glasfaser wird eine kommerzielle Stufenindexfaser verwendet. In Stufenindexfasern erfolgt der Übergang der Brechzahlen zwischen Kern- und Mantelmaterial diskontinuierlich.

Die Steuerung der Faserziehanlage erfolgt computergesteuert. Das gewünschte Faserprofil wird mittels eines Algorithmus in eine Reihe von Ziehschritten umgewandelt, die anschließend von der Ziehanlage ausgeführt werden.

1.1.2 Modenpropagation

Dringt Licht in einen Wellenleiter ein, so entstehen nur bei bestimmten Einfallswinkeln durch konstruktive Interferenz der parallelen Komponenten der Wellen in transversaler Richtung stationäre Feldverteilungen, die Moden genannt werden [14, 15].

Zur Bestimmung der Feldverteilung in einer Glasfaser, die einem zylindrischen Wellenleiter entspricht, müssen die Maxwellschen Gleichungen in Zylinderkoordinaten \((\rho, \phi, z)\) ausgedrückt und gelöst werden. Die Feldkomponente wird dabei üblicherweise in z-Richtung entlang der Faserachse
1.1. ULTRADÜNNNE GLASFASERN

betrachtet, wobei die übrigen Komponenten der Felder daraus berechnet werden können. Unter Berücksichtigung der Stetigkeitsbedingung für die tangentialen Felder E_ϕ, E_z, H_ϕ und H_Z am Kern-Mantel-Übergang ergibt sich die transzendente Gleichung für die Propagationskonstante β [14, 15]:

\[
\left(\frac{J_l'(ha)}{haJ_l'(ha)} + \frac{K_l'(qa)}{qaK_l'(qa)} \right) \left(\frac{n_1^2J_l'(ha)}{haJ_l'(ha)} + \frac{n_2^2K_l'(qa)}{qaK_l'(qa)} \right) = \left(\frac{l\beta}{k_0} \right)^2 \left[\left(\frac{1}{ha} \right)^2 + \left(\frac{1}{qa} \right)^2 \right]^2 ,
\]

(1.1)

mit

\[
h = \sqrt{n_1^2k_0^2 - \beta^2} , \quad q = \sqrt{\beta^2 - n_2^2k_0^2} .
\]

(1.2)

wobei J_l die Besselfunktion erster Art der Ordnung l, K_l die modifizierte Besselfunktion zweiter Art der Ordnung l, a der Faserradius, k_0 die Wellenzahl, n_1 und n_2 die Brechungsindices innerhalb und außerhalb der Faser sind. Da Gl. (1.1) quadratischer Natur ist, erhält man zwei Lösungen, die als HE- bzw. EH-Moden bezeichnet werden.

Abbildung 1.4: Graphische Darstellung der normierten Propagationskonstante β/k_0 als Funktion des V-Parameters für die ersten sieben Moden (adaptiert aus [15]).

Die Propagationsfähigkeit der Moden hängt von der Wellenlänge λ des propagierenden Lichtes, dem Kernradius a und den Brechungsindizes $n_{1,2}$ der Glasfaser ab. Diese werden im sogenannten V-Parameter zusammenge-
KAPITEL 1. SPEKTROSKOPIE MIT ULTRADÜNNEN GLASFASERN

fasst:

\[V = \frac{2\pi a}{\lambda} \sqrt{n_1^2 - n_2^2}. \] (1.3)

Der V-Parameter bestimmt ebenso die Anzahl der in der Faser propagierenden Moden. Während für die Anzahl der möglichen EH\(_{1m}\)-Moden eine untere Grenze durch den V-Parameter existiert, ist dies bei den HE\(_{1m}\)-Moden nicht mehr der Fall. Die HE\(_{11}\)-Mode (Fundamentalmode) kann immer propagieren.

In Abb. 1.4 ist die normierte Propagationskonstante \(\beta/k_0 \) für die ersten sieben Moden als Funktion des V-Parameters dargestellt. Man erkennt deutlich eine Unterscheidung in Multimode- und Monomode-Bereich. Bei Verringerung bzw. Erhöhung des V-Parameters, z.B. durch die Änderung des Radius bzw. der Wellenlänge des geführten Lichtes, nähert sich die normierte Propagationskonstante dem Wert von \(n_2 \) bzw. \(n_1 \) an. Das bedeutet, dass z.B. bei Verringerung des Faserradius die Felder immer weiter aus der Faser in die Umgebung eintreten. Wenn nur eine Mode in der Faser propagieren soll, muss für den V-Parameter \(V < 2,405 \) gelten. Wenn diese Ungleichung erfüllt ist, dann kann nur die Fundamentalmode HE\(_{11}\) propagieren.

Die Intensitätsverteilung der HE\(_{11}\)-Mode in Fasern mit Radien, die im Bereich der Wellenlänge des propagierenden Lichtes liegen, lässt sich in unserem Fall für das geführte, unpolarisierte Licht, das näherungsweise zirkular polarisiertem Licht entspricht, bestimmen. Es ergibt sich eine Intensitätsverteilung, deren Verlauf der Darstellung in Abb. 1.2 entspricht.

1.1.3 Profil der Übergänge

Es ist erforderlich ultradüne Glasfasern herzustellen, die eine möglichst verlustarme Lichtübertragung im Verlauf der Übergangsbereiche besitzen. Diese Übergänge entstehen während des Ziehprozesses, bei dem die Glasfaser mit einem Anfangsdurchmesser von 125 \(\mu \text{m} \) auf einen Durchmesser von 500 nm oder weniger verjüngt wird. Ein Übergang ist adiabatisch, wenn die
1.1. ULTRADÜNNE GLASFASERN

Änderung des Radius an jeder Stelle des Übergangs für eine Anpassung der Mode des geführten Lichtes klein genug ist, sodass dort keine Intensitätsverluste auftreten. Innerhalb eines Übergangs wird das Licht von einer schwach geführten Mode \((n_{\text{Kern}} \approx n_{\text{Mantel}} \text{ bzw. } \Delta n \ll 1)\) im Faserkern in eine stark geführte Mode in der Fasertaille und wieder zurück überführt. Adiabatische Übergänge können durch ein geeignetes Faserprofil erzeugt, und damit Störungen in den Übergängen vermieden werden.

Eine ultradünne Glasfaser kann in drei Bereiche eingeteilt werden (Abb. 1.5), bei denen sich die Propagationseigenschaften ändern. Im unbearbeiteten Bereich (a) wird das Licht im Kern aufgrund der Totalreflexion an der Kern-Mantel-Grenzfläche geführt. Im Übergang zwischen unbearbeitetem und ultradünnem Bereich (b) wird durch die Verjüngung der Faser der Kern durchmesser zu gering, um weiterhin die Führung des Lichtfeldes zu gewährleisten. Die Lichtwelle dehnt sich über den Kern und den Mantel aus und tritt zusätzlich in die Faserumgebung aus. Die Lichtführung erfolgt nun hauptsächlich im Mantelmaterial. Durch die weitere Verjüngung, bis zum Erreichen des Taillendurchmessers, wird das Lichtfeld auf den Faserdurchmesser konzentriert. In diesem Übergang übernimmt der Mantel die Rolle des Kerns und die umgebende Luft die Rolle des Mantels. In der Fasertaille (c) nimmt der Radius einen konstanten Wert im Subwellenlängenbereich an. Das propagierende Licht weist hier ein großes evaneszentes Feld an der Faseroberfläche auf.

Zur Veranschaulichung ist in Abb. 1.6 eine Elektronenmikroskopaufnahme einer verjüngten Faser abgebildet. In der oberen Aufnahme ist der Übergang des Faserdurchmessers von 125 µm auf 10 µm deutlich zu erkennen.
KAPITEL 1. SPEKTROSKOPIE MIT ULTRADÜNNEN GLASFASERN

Das untere Bild zeigt eine ultradünne Glasfaser, deren Durchmesser 500 nm beträgt.

1.2 Absorbanz

Werden Atome oder Moleküle in das evaneszente Feld einer ultradünnen Glasfaser gebracht, so können deren Absorptionseigenschaften gemessen werden. Diese werden von der Absorbanz beschrieben, die sich direkt aus der Abschwächung der Intensität des geführten Lichtes in der Faser ergibt.

![Diagramm der Absorbanz](image)

Abbildung 1.7: Dargestellt sind die sensitiven Flächen für die (a) Freistrahl-Methode, \(A_{\text{frei}} = \pi r_{\text{frei}}^2 \) und die (b) faserbasierte Methode, \(A_{\text{Faser}} = 2 \pi r_{\text{Faser}} l \).

Für die Spektroskopie von Molekülen oder Atomen kann ebenso ein freier Laserstrahl genutzt werden. In Abb. 1.7 (a) ist schematisch der Aufbau eines Experimentes zur Bestimmung des Absorptionsspektrums eines Adsorbats auf einer Oberfläche dargestellt. Die ausgeblendete Laserintensität \(I_0 \) tritt senkrecht durch die Oberfläche und wird dahinter von einem Detektor gemessen. Wenn die Frequenz des Lasers mit der Energie eines Übergangs der Moleküle übereinstimmt, so wird Licht absorbiert und der Detektor registriert eine Signaländerung [16]. Jedes Molekül auf der Oberfläche absorbiert einen Anteil des eingestrahlten Lichtes, der dem Verhältnis seines Absorptionquerschnittes zur Gesamtoberfläche, die durch den Laserstrahl ausgeleuchtet wird, entspricht. Für eine feste Oberflächenbedeckung ist die Anzahl der ausgeleuchteten Moleküle proportional zum Querschnitt des Laserstrahles. Die gesamte Absorption durch alle ausgeleuchteten Moleküle ist also unabhängig von der Größe des Laserquerschnittes.

Auf einer Faseroberfläche hingegen hat das Lichtfeld eine sehr kleine effektive Querschnittsfläche, die ungefähr \(\pi r_{\text{Faser}}^2 \) entspricht. Die Moleküle aber entlang der gesamten Taillenlänge \(l \) auf der Oberfläche verteilt sind
1.2. ABSORBANZ

(Abb. 1.7 (b)), ist die Anzahl der ausgeleuchteten Moleküle bei fester Oberflächenbedeckung proportional zu der Zylinderoberfläche $A_{\text{Faser}} = 2\pi r_{\text{Faser}} l$ und nicht zur effektiven Querschnittsfläche wie bei einem freien Laserstrahl (Abb. 1.7 (a)). Man kann daher das Absorptionssignal durch geeignete Wahl der Faserlänge und des Faserradius beeinflussen.

Im Allgemeinen wird die Absorbanz definiert als

$$\eta(\lambda) = \frac{\ln \left(\frac{P_{\text{ein}}(\lambda)}{P_{\text{trans}}(\lambda)} \right)}{\ln(10)} ,$$

wobei $P_{\text{trans}}(\lambda)$ die transmittierte und $P_{\text{ein}}(\lambda)$ die einfallende Leistung des Lichtes bei einer Wellenlänge λ ist. Für ultradünne Fasern ergibt sich die Absorbanz:

$$\eta_{\text{Faser}}(\lambda) = \frac{\ln \left(\frac{P_{\text{mol}}(\lambda)}{P(\lambda)} \right)}{\ln(10)} ,$$

wobei $P_{\text{mol}}(\lambda)$ bzw. $P(\lambda)$ die transmittierten Leistungen durch die Faser in Anwesenheit bzw. Abwesenheit der Moleküle auf der Oberfläche im spektralen Intervall $[\lambda, \lambda + \Delta\lambda]$ sind. Mit der Annahme, dass die Absorption nur durch Moleküle und nicht durch weitere Streuzentren des Glasfasermaterials erfolgt, gilt für eine schwache Absorption, d.h. für $P_{\text{abs}}(\lambda) = P(\lambda) - P_{\text{mol}}(\lambda) \ll P(\lambda)$:

$$\eta_{\text{Faser}}(\lambda) \approx \frac{P_{\text{abs}}(\lambda)}{\ln(10) P(\lambda)} .$$

Jedes Molekül auf der Faseroberfläche bildet einen Absorptionsquerschnitt $\sigma(\lambda)$ und absorbiert einen konstanten Anteil $\sigma(\lambda)/A_{\text{eff}}$ des transmittierten Lichts. Mit A_{eff} wird hiermit eine effektive Fläche definiert, die durch das Verhältnis aus transmittierter Leistung $P(\lambda)$ zur Intensität des evaneszenten Feldes an der Oberfläche I_{Ob} ausgedrückt werden kann

$$A_{\text{eff}} = \frac{P(\lambda)}{I_{\text{Ob}}(\lambda)} .$$

Bei der Wechselwirkung von N Molekülen auf der Faseroberfläche beträgt die transmittierte Leistung:

$$P_{\text{mol}}(\lambda) = P(\lambda) \left[1 - \frac{\sigma(\lambda)}{A_{\text{eff}}} \right]^N ,$$

womit sich für die Absorbanz im Falle eines viel kleineren Absorptionsquerschnittes als der effektiven Fläche, d.h. $\sigma(\lambda)/A_{\text{eff}} \ll 1$, ergibt:

$$\eta_{\text{Faser}}(\lambda) \approx \frac{N \sigma(\lambda)}{\ln(10) A_{\text{eff}}(\lambda)} .$$

Für eine gegebene Bedeckung $\theta = N/2\pi rl$ der Oberfläche lässt sich die Absorbanz folgendermaßen berechnen:

$$\eta_{\text{Faser}}(\lambda) \approx \frac{2\pi rl}{A_{\text{eff}}(\lambda)} \frac{\theta \sigma(\lambda)}{\ln(10)} .$$
KAPITEL 1. SPEKTROSKOPIE MIT ULTRADÜNNEN GLASFASERN

Abbildung 1.8: Graphische Darstellung der Empfindlichkeit der Faser $1/A_{\text{eff}}$ in Einheiten von $1/\lambda$ und r/A_{eff} in Einheiten $1/\lambda^2$ als Funktion des Faserradius r in Einheiten der Wellenlänge λ.

Selbst eine Reduzierung der Bedeckung ändert somit die Absorbanz bei gleichzeitiger Vergrößerung der Fasertaillenlänge l nicht.

Zum Vergleich ergibt sich für einen freien Lichtstrahl, der durch eine dünne Schicht von Molekülen mit der Bedeckung θ hindurchgeht, die Absorbanz

$$
\eta_{\text{frei}}(\lambda) = \frac{\theta \sigma(\lambda)}{\ln(10)}.
$$

Es lässt sich erkennen, dass für eine gegebene Bedeckung θ das Signal durch die Faser um einen Faktor ξ stärker ist als für einen freien Strahl

$$
\eta_{\text{Faser}}(\lambda) \approx \xi(\lambda) \eta_{\text{frei}}(\lambda) \quad \text{mit} \quad \xi = \frac{2\pi r l}{A_{\text{eff}}}. \tag{1.12}
$$

Nähert man die effektive Fläche durch $A_{\text{eff}}(\lambda) \approx \pi r_{\text{Faser}}^2$ an, erhält man nach Gl. (1.12) $\xi \approx 2l/r$. Demzufolge ergibt sich z.B. für eine typische Faser mit einem Radius von 250 nm und einer Taillenlänge von 1,5 mm eine Erhöhung der Empfindlichkeit um einen Faktor 10^4.

12
1.3 Optimaler Faserdurchmesser

Bei der Spektroskopie von einzelnen Molekülen wird nach Gl. (1.9) für eine gegebene Anzahl N von Molekülen die Empfindlichkeit durch $1/A_{\text{eff}}$ bestimmt. Die Empfindlichkeit $1/A_{\text{eff}}$ in Einheiten von $1/\lambda^2$ ist als Funktion des Faserradius in Abb. 1.8 dargestellt und wird bei einem Wert von $r_{\text{max}} = 0.226 \cdot \lambda$ maximal.

Um eine optimale Empfindlichkeit der Faser für die Spektroskopie von dünnen Schichten zu ermöglichen, muss gemäß Gl. (1.10) für eine gegebene Bedeckung θ der Quotient r/A_{eff} maximal gewählt werden. Damit verschiebt sich das Maximum im Vergleich zu dem für einzelne Moleküle zu höheren Radien, was in Abb. 1.8 zu erkennen ist. Der optimale Radius lässt sich somit bestimmen und beträgt $r_{\text{max}} = 0.253 \cdot \lambda$.
KAPITEL 1. SPEKTROSKOPIE MIT ULTRADÜNNEN GLASFASERN
Kapitel 2

Spektroskopie von PTCDA an Luft

2.1 Das PTCDA-Molekül

Die Spektroskopie wird mit Perylen-3,4,9,10-tetra-carbon-säure-dianhydrid (PTCDA), mit der Summenformel C$_{24}$H$_8$O$_6$, als Modellsystem durchgeführt. Die molekulare Struktur ist in Abb. 2.1 dargestellt. Bei den zahlreichen Untersuchungen von Struktur- und Wachstumseigenschaften der PTCDA-Moleküle wurde festgestellt, dass diese glatte und geordnete Filme auf vielen Substraten vergleichbarer Struktur bilden [17]-[26]. Das aromatische Molekül, bildet durch die sp2-Hybridisierung der Ring-Kohlenstoffatome eine

Abbildung 2.1: Molekulare Struktur und Dimensionen von Perylen-3,4,9,10-tetra-carbonsäure-dianhydrid (PTCDA).
KAPITEL 2. SPEKTROSKOPIE VON PTCDA AN LUFT

planare Form. Die Moleküle legen sich flach auf die Substratoberfläche, d.h. die Molekülebene ((102)-Ebene) des PTCDA-Kristalls ist parallel zur Oberfläche ausgerichtet (Abb. 2.2), und ordnen sich in einer Fischgrätenstruktur an [17, 19].

Abbildung 2.2: Monokline Einheitszelle der Kristallstruktur von PTCDA mit den Dimensionen $a = 0,372 \text{ nm}$, $b = 1,196 \text{ nm}$, $c = 1,734 \text{ nm}$ und der Winkel $\beta = 98,8^\circ$ (adaptiert aus [19]).

Das Wachstum erfolgt in einer Schicht-Stapel-Struktur, bei dem die einzelnen Schichten in einem geringen Abstand von 0,322 nm übereinander angeordnet sind, was zu einer starken Überlappung der delokalisierten π-Wellenfunktionen in Stapelrichtung führt. Innerhalb einer Gitterebene ist die Wechselwirkung wegen der verhältnismäßig großen molekularen Abstände von 1,2 - 1,5 nm und des geringen molekularen Überlapps der Wellenfunktionen nur schwach ausgeprägt. Es resultiert ein säulenartiges Wachstum mit Hohlräumen zwischen den Molekülstapeln, die um etwa 90° gegeneinander verdreht sind [17, 32]. Die Anisotropie der optischen und elektronischen Eigenschaften ist auf die starke intermolekulare π-Wechselwirkung in Stapelrichtung zurückzuführen [28, 32].

Aufgrund der Stabilität bei Raumtemperatur und des niedrigen Dampfdruckes von $\sim 3 \cdot 10^{-9} \text{ mbar}$ von PTCDA, hat es sich sowohl für Messungen an Atmosphärendruck als auch zur Vakuumsublimation gut bewährt. Beson-
Abbildung 2.3: Schematische Darstellung der Energiestruktur einzelner PTCDA-Moleküle.

ders eignen sich diese organischen Moleküle für Spektroskopiemessungen, da sich die optischen Eigenschaften der kristallinen Form von denen der Einzelmoleküle stark unterscheiden [17, 28, 33].

Das Einzelmolekülabsorptionsspektrum von PTCDA zeichnet sich durch eine stark ausgeprägte Peakstruktur aus [29, 33, 34]. In Abb. 2.3 sind schematisch die möglichen Übergänge zwischen dem elektronischen Grundzustand S_0 und dem ersten angeregten elektronischen Zustand S_1 dargestellt. Die eingezeichneten Absorptionsenergien bei 2,39, 2,56 und 2,74 eV sind auf die vibronische Progression zwischen dem Vibrationszustand $\nu'' = 0$ des S_0-Zustandes zu den Vibrationszuständen $\nu' = 0, 1, 2$ des S_1-Zustandes zurückzuführen [17, 35].

Bis zu einer Monolage ändert sich das Absorptionsspektrum dahingehend, dass sich die vibronischen Absorptionsbanden zu niedrigeren Energien verschieben. Diese Rotverschiebung ist auf die mit steigender Molekülzahl zunehmenden intermolekularen Wechselwirkungen zurückzuführen [29, 33]. Während der Bildung der Monolage entstehen aus den einzelnen auf Glassubstrat bei Raumtemperatur sehr mobilen Molekülen Inseln, deren Fläche mit steigender Molekülzahl zunimmt, bis die Lage geschlossen ist. Bei weiter steigender Bedeckung kommt es zu Lagenwachstum, wobei die Form des Absorptionsspektrums durch eine Verbreiterung und eine weniger ausgeprägte Peakstruktur charakterisiert wird. Die starke Veränderung der spektralen
Form ist auf die Wechselwirkung der Moleküle in Stapelrichtung und damit dem starken Überlappen der π-Wellenfunktionen zurückzuführen.

2.2 Absorptionsmessungen

2.2.1 Versuchsaufbau

Der Versuchsaufbau für die Spektroskopiemessungen ist in Abb. 2.4 dargestellt. Die ultradüne Glasfaser wird über einem, mit Molekülpulver gefüllten, Heizelement platziert. Durch das Erhitzen verdampfen die Moleküle und gelangen durch Konvection auf die Glasfaseroberfläche. Zur Spektroskopie wird Licht einer Weißlichtquelle (AQ-4303B, Ando) in ein Faserende gekoppelt und das gesamte Spektrum mit einem Spektrometer (AvaSpec-2048-2, Avantes) am anderen Faserende gemessen. Sowohl die Weißlichtquelle als auch das Spektrometer sind fasergekoppelt, d.h. die Faser kann über sogennannte FC-Stecker mit diesen Geräten verbunden werden, was die Justage bei der Lichtkoppelung erheblich erleichtert. Wenn die Moleküle die Tailenoberfläche erreichen, wechselwirken diese mit dem evaneszenten Feld und absorbieren einen Teil des geführten Lichtes.

Abb. 2.4: Schematische Darstellung des experimentellen Versuchsaufbaus für die Absorptionsmessungen.

Die ersten Messungen wurden mit einer Kanüle durchgeführt, deren Spitze mit PTCDA-Pulver gefüllt und zum Erhitzen mit einem Platindraht umwickelt wurde. Die Beschichtung der Kanüle, die ebenfalls beim Erhitzen
2.2. ABSORPTIONSMESSENDEN

verdampft ist, verhinderte allerdings die Messung der Absorbanzspektren von PTCDA. Erst nach direktem Auftragen des Molekül-Pulvers auf die Glühwendel konnte Absorption von PTCDA beobachtet werden.

2.2.2 Versuchsdurchführung

Die Absorbanzmessung wurde mit einer ultradünnen Glasfaser mit einem Taillendurchmesser von 500 nm und eine Taillenlänge von 1 mm durchgeführt, die aus einer herkömmlichen Stufenindexfaser (Newport F-SF, Monomode bei einer Wellenlänge $\lambda = 850$ nm) hergestellt wurde. Dabei wurden die Moleküle direkt von der Glühwendel verdampft und währenddessen Spektren mit einer Integrationszeit von 2 ms und einem zeitlichen Abstand von 1 s aufgenommen.

Das Verhalten der Spektren beim Aufdampfen über eine Dauer von 48 s ist in Abb. 2.5 (a) dargestellt. Deutlich sind die Peaks bei $Peak_1 = 2.39$
Abbildung 2.5: (a) Zeitliche Entwicklung der Absorbanzspektren von PTCDA-Molekülen bei einer Aufdampfdauer von 0-48 s. (b) Danach wird die Heizphase beendet und weiter die zeitliche Entwicklung über 1000 s aufgenommen.
Tabelle 2.1: Berechnung der Bedeckung θ und Molekülanzahl N für verschiedene Aufdampfzeiten mit den zugehörigen Absorbanzen η.
Energien eine sehr kleine Veränderung im Monomerspektrum.

Für PTCDA-Moleküle ist jedoch ein Wachstum in Stapelrichtung energetisch günstiger, da aufgrund des geringen Abstandes von 0,322 nm die Wechselwirkung zwischen zwei übereinander liegenden Molekülen stark ist. Die Ausbildung von Stapeln macht sich in einer starken Veränderung der spektralen Form bemerkbar.

Die Wechselwirkung der Moleküle miteinander wird durch den nächsten Nachbarn charakterisiert. Die Wechselwirkungen sind dabei für zwei Molekülen in einer Ebene (Ebenendimer) wesentlich schwächer ausgeprägt als für übereinander gestapelte Moleküle (Stapeldimer). Es sollte beachtet werden, dass beide Konfigurationen als Dimer bezeichnet werden, obwohl ein wesentlicher Unterschied zwischen den Wechselwirkungen und damit dem Einfluss auf die spektrale Form besteht [29].

Der große Vorteil der faserbasierten Methode ist, dass wegen der hohen Empfindlichkeit die Dynamik in kleinen Zeitintervallen aufgelöst werden kann.

Aus den aufgenommenen Spektren kann die Bedeckung der Faseroberfläche, z.B. bei einer Energie von 2,39 eV, nach Gl. (1.10) berechnet werden. Hierfür wird der Wirkungsquerschnitt von PTCDA, der aus dem molaren Extinktionskoeffizienten in Lösung [36] nach \(\sigma = 2 \cdot 10^{-16} \text{cm}^2 \) beträgt. Es wurde bis zu einer Absorbanz von 0,42 aufgedampft, die einer Bedeckung von \(4 \cdot 10^{15} \text{m}^{-2} \) entspricht und es konnte eine minimale Bedeckung von \(0,55 \cdot 10^{15} \text{m}^{-2} \), was 0,067% einer Monolage entspricht, aufgelöst werden. Die Bedeckungen und die Teilchenzahlen für die jeweiligen Aufdampfzeiten können Tab. 2.1 entnommen werden.

Der Peak bei 2,74 eV ist aufgrund der Wellenlängenabhängigkeit der Empfindlichkeit der ultradünnen Glasfaser schwächer ausgeprägt als der bei 2,39 eV, da \(r \lambda / A_\text{eff} \) für 2,39 eV höher ist als für 2,74 eV (siehe Kap. 1.3). Dies sollte beim Vergleich von Messungen, die auf anderen Methoden basieren, beachtet werden.

Auswertung

Das Verhalten der Peakenergien für die Absorbanzspektren während der Aufdampfphase und der Agglomerationsphase wurden mit Hilfe eines Analyse- und Darstellungsprogramms (Origin 7G) untersucht. Da die Absorptionspeaks durch homogene und inhomogene Verbreiterung einer Faltung von Gauß- und Lorentzprofil (Voigtprofil) folgen, wurden für die Auswertung Fits der Absorbanzspektren durch das Anfitten von drei Pseudovoigtprofilen erstellt. Daraus konnten die Peakmaxima problemlos ermittelt werden. Die Pseudovoigtprofilfunktion ist eine vereinfachte Voigtfunktion, die vorwiegend zur Auswertung von Spektroskopiedaten verwendet und folgender-
maßen formuliert wird:

\[y = y_0 + A \left(m_u \frac{2}{\pi} \frac{w}{4(x - x_c)^2 + w^2} + \right. \\
\left. (1 - m_u) \sqrt{\frac{4 \ln 2}{\pi w}} e^{-\frac{4 \ln 2}{w^2} (x - x_c)^2} \right), \tag{2.1} \]

wobei \(y_0 \) der Offset, \(x_c \) die Mitte, \(A \) die Amplitude, \(w \) die Breite des Peaks und \(m_u \) der Profilformfaktor ist. Die Fitfehler werden von Origin berechnet und als Fehlerbalken in den Graphen eingetragen.

Einfluss der Wasserfilme

![Graphische Darstellung der Energieverschiebung der Lage der Maxima von Peak1 mit der Zeit. Die vertikale Linie trennt die Aufdampfphase von der Agglomerationsphase.](image)

Abbildung 2.6: Graphische Darstellung der Energieverschiebung der Lage der Maxima von Peak1 mit der Zeit. Die vertikale Linie trennt die Aufdampfphase von der Agglomerationsphase.

In Abb. 2.6 ist der zeitliche Verlauf der Energieverschiebung von Peak1 dargestellt. Ein großer Sprung zu niedrigen Energien ist nach dem Beenden der Heizphase erkennbar. Wird die Heizphase beendet, kühlt die Fasertaille sehr schnell auf Raumtemperatur ab. Wiederum adsorbieren Wassermoleküle aus der Luft auf der Faseroberfläche, jedoch unterscheidet sich das Adsorption-Desorption-Gleichgewicht von Wassermolekülen bei Raumtemperatur von...
dem bei ca. 100 °C. Wenn das Gleichgewicht wiederhergestellt ist verschob sich der Peak um etwa 16 meV und verbleibt bei etwa einem konstanten Wert.

2.2.3 Optimierung der Heizquelle

Da die Absorbanz direkt proportional zur Molekülzahl ist, lassen sich daraus die Aufdampfraten der Messungen mit den beiden Heizquellen bestimmen und graphisch darstellen (Abb. 2.7). Da die Absorbanz vom Radius abhängt und die beiden Messungen mit Fasern unterschiedlicher Taillendurchmesser durchgeführt wurden, ist die Skala entsprechend angepasst worden. Die Aufdampfdauer beträgt, ab der ersten sichtbaren Deposition von Molekülen, 20 s.

Beim Einsatz der Glühwendel erkennt man große Schwankungen der Aufdampfrate, während sich die Rate im Vergleich dazu mit dem Bornitridtiegel nahezu konstant verhält. Der Aufdampfprozess verläuft somit mit dem Bornitridtiegel gleichmäßiger als mit der Glühwendel.

Abbildung 2.7: Graphische Darstellung der Aufdampfrate mit der Glühwendel und dem Tiegel. Die Aufdampfrate ist als Funktion der Zeit aufgetragen, wobei die Skala auf Grund der unterschiedlichen Taillenradien entsprechend angepasst wurde.
2.3 Zusammenfassung und Optimierung des Versuchsaufbaus

Die Planung und der Aufbau der Vakuumapparatur wird in Kap. 3 ausführlich behandelt, und im Anschluss daran (Kap. 4) wird die Durchführung der Experimente im Vakuum beschrieben und die Ergebnisse diskutiert.
KAPITEL 2. SPEKTROSKOPIE VON PTCDA AN LUFT
Kapitel 3
Aufbau der Vakuumapparatur

Die Erzeugung eines kontrollierbaren Molekülstrahles bildet die Basis, um Molekülchichten im Submonolagenbereich gleichmäßig auf einer ultradünnen Glasfaser aufzudampfen zu können. Um dieser Anforderung und der nach einer verschmutzungsfreien Umgebung gerecht zu werden, wurde im Rahmen dieser Diplomarbeit eine Vakuumapparatur für die Durchführung der Experimente im Ultrahochvakuum (UHV) konzipiert und aufgebaut. Nach einer Einführung in die Grundlagen der Vakuumtechnik, wird der Aufbau des Vakuumsystems detailliert beschrieben.

3.1 Gasfluss in einem Vakuumsystem

Die wichtigsten Größen zum Verständnis des Gasflusses in einem Vakuumsystem sind das Saugvermögen und die Saugleistung einer Vakuumpumpe sowie der Leitwert eines Vakuumleitungselementes. Im Folgenden wird eine kurze Einführung in die Vakuumtechnik gegeben, um die nötigen Größen zur Berechnung und zum Verständnis des Aufbaus. Zur weiteren Vertiefung wird an dieser Stelle auf die Literatur [37, 38, 39] verwiesen.

3.1.1 Saugvermögen und Saugleistung

Das Saugvermögen S einer Vakuumpumpe ist definiert durch den Volumendurchfluss dV/dt durch den Querschnitt der Ansaugöffnung der Pumpe:

$$S = \frac{dV}{dt}, \quad (3.1)$$

wobei der Volumendurchfluss das Volumen pro Zeiteinheit durch ein Leitungselement (z.B. ein Rohr, ein Schlauch, Ventile, Düsen oder Öffnungen zwischen zwei Behältern) bei dem jeweiligen Druck und der jeweiligen Temperatur des strömenden Gases ist. Dabei muss beachtet werden, dass je nach
Druck und Temperatur die Anzahl der geförderten Teilchen bei gleichem Volumendurchfluss verschieden ist.

Mit der idealen Gasgleichung \(pV = NkT \) ergibt sich bei konstanter Temperatur während des Evakuierens ein Massendurchfluss von

\[
Q_m = \frac{dM}{dt} = \frac{m}{kT} \cdot \frac{d(pV)}{dt}.
\]

Dieser ist demnach bei einer konstanten Temperatur bis auf einen Vorfaktor gleich einem Energiedurchfluss durch das Leitungselement, der auch als \(pV \)-Durchfluss bezeichnet wird (kurz: Fluss \(Q \)).

Die Saugleistung einer Pumpe kann entweder durch den Massendurchfluss \(Q_m \) oder durch den Fluss \(Q \) angegeben werden, wobei letzteres in der Regel der Fall ist. Bleibt der Druck auf der Ansaugseite der Pumpe konstant, so kann der Fluss beschrieben werden als

\[
Q = \frac{d(pV)}{dt} = p \cdot \frac{dV}{dt} = p \cdot S,
\]

wobei \(S \) das Saugvermögen der Pumpe beim Ansaugdruck \(p = p_A \) ist.

Die Gasmenge, die von der Hochvakuumpumpe mit einem effektiven Saugvermögen \(S_{\text{eff}} \) und einem Ansaugdruck \(p_A \), auch Hochvakuumdruck genannt, abgesaugt wird, muss beim Vorvakuumdruck \(p_V \) von der Vorpumpe mit einem Saugvermögen \(S_V \) sicher abgeführt werden. Für den Fluss \(Q \) gilt somit

\[
Q = p_A \cdot S_{\text{eff}} = p_V \cdot S_V,
\]

und das erforderliche Saugvermögen der Vorvakumpumpe kann gemäß

\[
S_V = \frac{p_A}{p_V} \cdot S_{\text{eff}}
\]

berechnet werden [38].

3.1.2 Fluss

Der Fluss durch ein beliebiges Leitungselement ist gegeben durch

\[
Q = C(p_1 - p_2),
\]

wobei \(\Delta p = (p_1 - p_2) \) die Differenz der Drücke am Ein- und Ausgang des Leitungselementes ist (Abb. 3.1) und \(C \) als Strömungsleitwert (bzw. Leitwert)
3.1. GASFLUSS IN EINEM VAKUUMSYSTEM

Abbildung 3.1: Leitwert C eines Leitungselementes mit dem Fluss Q und den entsprechenden Saugvermögen S_1, S_2 und Drücken p_1, p_2.

bezeichnet wird. Dieser ergibt sich aus der Geometrie des Leitungselementes und hängt von der Art der Strömung, mit der das Gas das Leitungselement passiert, ab.

Die Strömungsart des Gases bei geringem Druck kann mit der Knudsen-Zahl, die durch das Verhältnis von mittlerer freier Weglänge Λ und Leitungsdurchmesser d definiert ist, charakterisiert werden:

$$K_n = \frac{\Lambda}{d}. \quad (3.7)$$

Häufig wird auch $p \cdot d$ als charakteristische Größe für die verschiedenen Strömungsarten für ein bestimmtes Gas bei einer bestimmten Temperatur verwendet.

In der Vakuumtechnik treten hauptsächlich die viskose oder Kontinuumsströmung, die Molekularströmung und als Übergang zwischen den beiden die Knudsenströmung auf [37, 38].

• **Viskose Strömung** (Großvakuum: 1000 - 1 mbar):

 $\Lambda \ll d \Rightarrow K_n \ll 1$

 $\Lambda < \frac{d}{100} \iff p \cdot d > 6,0 \cdot 10^{-1}$ mbar-cm

 Die Wechselwirkungen der Teilchen untereinander bestimmen den Charakter der Strömung. Daher spielt die innere Reibung der strömenden Substanz eine große Rolle.
 Die viskose Strömung kann in zwei weitere Bereiche eingeteilt werden, die *turbulente Strömung* und die *laminare Strömung*. Zudem ist das Phänomen der *Verblockung* zu beachten, welches sowohl beim Belüften, beim Evakuieren eines Vakuumbehälters und bei Lecks eine Rolle spielt. Ein Gasstrom ist verblockt, wenn dieser nicht weiter ansteigt obwohl die Druckdifferenz sich weiter erhöht. Der kritische Wert ist erreicht, wenn die Strömungsgeschwindigkeit gleich der Schallgeschwindigkeit ist.
Knudsenströmung (Feinvakuum: $1 - 10^{-3}$ mbar)

$\Lambda \approx d \leftrightarrow K_n \approx 1$

$\frac{d}{100} \leq \Lambda < \frac{d}{2} \iff 6,0 \cdot 10^{-1} > p \cdot d > 1,3 \cdot 10^{-2}$ mbar·cm

Der Übergang zwischen der viskosen und der Molekularströmung.

Molekularströmung (Hochvakuum: $10^{-3} - 10^{-7}$ mbar, Ultrahochvakuum: $10^{-7} - 10^{-14}$ mbar):

$\Lambda \gg d \leftrightarrow K_n \gg 1$

$\Lambda > \frac{d}{2} \iff p \cdot d < 1,3 \cdot 10^{-2}$ mbar·cm

In diesem Bereich können die Stöße der Teilchen untereinander vernachlässigt werden. Es dominieren die Stöße der Teilchen mit den Behälterwänden.

3.1.3 Strömungsleitwerte

Ist die Vakuumpumpe mit dem Behälter in einer Vakuumanlage direkt verbunden, so stimmt das zum Evakuieren erforderliche, effektive Saugvermögen mit dem Nennsaugvermögen der Pumpe überein. Befinden sich Rohrleitungen zwischen der Pumpe und dem Behälter, so stellen diese einen Strömungswiderstand dar und es erfolgt dadurch eine Reduzierung des effektiven Saugvermögens S_{eff}:

$$\frac{1}{S_{\text{eff}}} = \frac{1}{S} + \frac{1}{C}, \quad (3.8)$$

wobei C der Gesamtleitwert einer Verbindungsleitung ist. Dieser setzt sich aus den Einzelleitwerten der in Serie geschalteten Bauteile zusammen

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}. \quad (3.9)$$

Für parallele Verbindung ergibt sich $C = C_1 + C_2 + \cdots + C_n$.

Der Leitwert hängt stark von der Art der Strömung und damit vom Druck ab. Darüberhinaus werden die Leitwerte einzelner Bauelemente auch durch die Geometrie mitbestimmt. Während bei viskoser Strömung der Leitwert vom Druck abhängt, ist dies bei Molekularströmung ($p \cdot d < 10^{-2}$ mbar·cm) nicht mehr der Fall. Es werden die Leitwerte nur für den Grenzfall der Molekularströmung betrachtet, da das Vakuumsystem für diesen Druckbereich konzipiert wurde [38].

Allgemein kann der Leitwert für ein Rohr [39, 40] mit dem Radius r und der Länge l folgendermaßen beschrieben werden:

$$C = \frac{8}{3} \cdot \frac{r^3}{l} \sqrt{\frac{\pi RT}{2M}}, \quad (3.10)$$
wobei \(R = 8,3145 \text{J/(K·mol)} \) die allgemeine Gaskonstante und \(M \) das Molekulargewicht der Gasteilchen ist.

Für ein **Rohr** mit einem kreisförmigen Querschnitt und einer Länge, die wesentlich größer ist als der Durchmesser \((l \gg d)\), gilt für Luft bei 293 K:

\[
C_{\text{Rohr}} = \frac{d^2 \pi}{12l} \cdot \bar{c} ,
\]

wobei \(\bar{c} = \sqrt{\frac{8RT}{\pi M}} \) die mittlere Teilchengeschwindigkeit des Gases ist. Für Luft bei \(T = 293 \text{ K} \) ist \(\bar{c} = 464 \text{ m/s} \) und \(M = 0,0288 \text{ kg/mol} \).

Bei einer **Blende** ist der Leitwert durch die Querschnittsfläche der Öffnung gegeben:

\[
C_{\text{Blende}} = \frac{d^2 \pi}{16} \cdot \bar{c} .
\]

Der Leitwert von **kurzen Rohren** \((l \leq d)\) wird wie folgt bestimmt:

\[
\frac{1}{C} = \frac{1}{C_{\text{Blende}}} + \frac{1}{C_{\text{Rohr}}} .
\]

Enthält die Leitung **Kniestücke** oder Bögen [38], können diese durch eine größere effektive Länge \(l_{\text{eff}} \) berücksichtigt werden, die sich folgendermaßen abschätzen lässt:

\[
l_{\text{eff}} = l_{\text{axial}} + 1,33 \cdot \frac{\theta}{180} \cdot d ,
\]

wobei \(l_{\text{axial}} \) die axiale Länge der Leitung, \(d \) der Innendurchmesser und \(\theta \) der Winkel des Knies ist (Abb. 3.2).

Abbildung 3.2: Veranschaulichung der Effektive Länge eines gebogenen Leitungselementes.

Aus den Leitwerten der Leitungselemente kann der Druck an der Stelle des effektiven Saugvermögens berechnet werden [48]. Mit den Gln. (3.3), (3.6) und (3.8) lässt sich der Druck am Ende des Leitungselementes mit dem Saugvermögen der Pumpe \(S \) und dem Leitwert \(C \) bestimmen. Dabei bleibt der Fluss \(Q \) im gesamten System gleich, d.h. es gilt

\[
Q = p_{\text{eff}} S_{\text{eff}} = p S = C(p_{\text{eff}} - p) ,
\]

\[
p_{\text{eff}} = p \left(1 + \frac{S}{C} \right) .
\]
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

Abbildung 3.3: 3D-Konstruktion der Vakuumapparatur.

3.1.4 Leckrate

Der Enddruck im Rezipienten wird durch den einströmenden Gasfluss und die Saugleistung der Pumpe bestimmt. Der einströmende Gasfluss wird sowohl durch Undichtigkeiten im Rezipienten (reelle Lecks), als auch durch die Desorption der Gasteilchen von den Behälterwänden (virtuelle Lecks) verursacht. Die Leckrate \(Q_L \) ist definiert durch:

\[
Q_L = V \cdot \frac{dp}{dt}, \quad (3.17)
\]

wobei \(V \) das Rezipientenvolumen ist.

Solange die Pumpleistung größer als die Leckrate ist, nimmt der Druck exponentiell ab. Erreicht der Druck den Bereich, in dem sich die Saugleistung in der Größenordnung der Leckrate befindet, dann erfolgt die weitere Druckabnahme langsamer und konvergiert schließlich gegen den Enddruck. Zur Untersuchung der Leckrate verwendet man sowohl die Helium-Leckanalyse als auch die Druckanstiegsmethode [37, 38].

3.2 Vakuumsystem

Der Vakuumaufbau besteht aus zwei Teilen, der Haupt- (Kap. 3.3) und der Ofenkammer (Kap. 3.4), die durch ein Pneumatikventil getrennt sind. Somit können beide Kammern unabhängig voneinander evakuiert werden. Die 3D-Konstruktion (Abb. 3.3) sowie die Dimensionierung (Abb. A.2) des Vakuumsystems erfolgte unter Zuhilfenahme eines 3D-Konstruktionsprogramms (Autodesk Inventor Professional 2008). In der Hauptkammer befindet sich die ultradünnle Glasfaser, auf die Moleküle aufgedampft werden sollen. Dafür wird in der Ofenkammer ein effusiver Molekülstrahl (Kap. 3.4.1) mittels einer Knudsen-Zelle (Kap. 3.4.2) erzeugt. Dieser kann mit mehreren Blenden...
kollimiert werden und die Aufdampfrate direkt hinter der ultradünnen Glasfaser mittels einer Quartzmikrowaage (Quartz Cristal Mikrobalance, QCM) (Kap. 3.3.1) gemessen werden. Für später geplante Fluoreszenzmessungen wurde eine weitere Glasfaser (Kap. 3.3.2) in der Hauptkammer installiert und senkrecht zur ultradünnen Glasfaser ausgerichtet. Die Fluoreszenz soll mit dem Faserende aufgenommen werden, das in einem Abstand von weniger als 100 \(\mu m \) zur ultradünnen Glasfaser eingestellt werden muss. Die Einstellung eines solchen geringen Abstandes ist mit Hilfe eines Mikroskopobjektivs und einer CCD-Kamera (Kap.3.3.3), die sich direkt über der ultradünnen Glasfaser befinden, möglich. Um in der Hauptkammer während der Molekülsublimation eine Vergrößerung des Druckes aufgrund der hohen Temperatur der Knudsen-Zelle zu vermeiden, wird eine Blende zwischen den beiden Kammern eingesetzt und somit differenzielles Pumpen erzeugt.

In Abb. 3.4 ist eine Aufnahme des gesamten Vakuumsystems dargestellt. Hierin befindet sich in der vorderen Hälfte die Hauptkammer und im hinteren Teil die Ofenkammer. Alle Vakuumkomponenten entsprechen dem CF-Standard (ConFlat®), d.h. die Flanschverbindungen sind symmetrische Verbindungen mit einer flanschseitigen Schneidkante. Die Abdichtung erfolgt mit sauerstofffreiem (OFHC) Kupfer, um die erforderliche geringe Leck- \((< 10^{-10} \text{ mbar l/s})\) und Desorptionsrate sowie die hohe Ausheiz-
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

barkeit zu gewährleisten. Die Hauptkammer musste wegen der individuellen Anforderungen an das Experiment speziell angefertigt werden. Die Ofenkammer besteht ausschließlich aus Standardkomponenten. Schematisch ist der Vakuumaufbau mit den Pumpenkombinationen sowie den angeordneten Ventilen und Vakuummessgeräten in Abb. 3.5 dargestellt. Dabei trennt ein Pneumatikventil (G) die beiden Kammern voneinander.

Abbildung 3.5: Schematische Darstellung des Vakuumaufbaus.

Der Einsatz trockener Pumpen ist notwendig, um Ölspuren im Vakuumbehälter und damit auf der Faser zu vermeiden. Zudem ist eine schnelle Evakuierung von Vorteil, da die Kammern mehrfach geöffnet werden müssen. Daher wurden für die Erzeugung des Vorvakuums ölfreie Scroll-Vakuumpumpen (Ofenkammer: SCROLLVAC SC 5D (L); Hauptkammer: SCROLLVAC SC 15D (F), Oerlikon Leybold Vacuum) verwendet. Diese Pumpen erreichen niedrige Enddrücke, \(p \leq 0,05 \) mbar (SC 5D) und \(p \leq 0,016 \) mbar (SC 15D), und haben Saugvermögen von 4,8 m\(^3\)/h (SC 5D) und 13,0 m\(^3\)/h (SC 15D). Für die Erzeugung des UHV's dienen Turbomolekularpumpen (Ofenkammer: HiPace 80 (I); Hauptkammer: HiPace 300 (B), Pfeiffer Vacuum). Diese Pumpen benötigen zum Starten einen maximalen Vorvakuumdruck von 22 mbar (HiPace 80) bzw. 15 mbar (HiPace 300), haben ein Saugvermögen von 48 l/s bzw. 220 l/s und erreichen beide einen Enddruck...
von \(p < 5 \cdot 10^{-10} \) mbar.

Bei der Hauptkammer erfolgt die Überwachung des Vorvakuumdruckes hinter der Turbomolekularpumpe mit einem Pirani-Transmitter (D) (TPR280, 1000 mbar bis \(5 \cdot 10^{-4} \) mbar, Pfeiffer Vacuum) und des Kammerdruckes mit einem Kaltkathoden-Transmitter (A) (IKR 270, 0,01 mbar bis \(5 \cdot 10^{-9} \) mbar, Pfeiffer Vacuum). In der Ofenkammer werden zur Messung des Vordruckes ein Pirani/Kaltkathode-Transmitter (J) (PKR 251, 1000 mbar bis \(5 \cdot 10^{-9} \) mbar) und zu der des Kammerdruckes ein Kaltkathode-Transmitter (H) (IKR 251, 0,01 mbar bis \(2 \cdot 10^{-9} \) mbar) eingesetzt. Mit Hilfe der Steuergeräte der Turbopumpen kann der Druck abgelesen werden, da diese über eine Auslesefunktion für Vakuummeter verfügen. Es sollte beachtet werden, dass die Druckangaben der Steuergeräte wegen der hohen Ungenauigkeit nicht für präzise Druckmessungen geeignet sind. Zur Anzeige der Drücke der zwei übrigen Vakuummeter wird ein zusätzliches Gerät (SingleGauge, Pfeiffer Vacuum) verwendet.

3.2.1 Differentielles Pumpen

Der niedrige Druck in der Hauptkammer soll während einer Messung möglichst erhalten bleiben, selbst wenn der Druck in der Ofenkammer durch das Erhitzen der Knudsen-Zelle einen größeren Wert besitzt. Um den niedrigen Druck in der Hauptkammer zu erhalten, müssen Leitungselemente oder Blenden in das System eingesetzt werden, die durch ihren Leitungswiderstand das effektive Saugvermögen verringern, sodass der Druck in der Hauptkammer
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

durch den in der Ofenkammer nicht beeinflusst wird. Um dies zu bewerkstel-
ligen, müssen die Leitwerte im Vakuumsystem ermittelt werden, die von der
Geometrie der Leitungselemente und von den Saugvermögen der Pumpen
abhängen.

Abbildung 3.6: Gasfluss im Vakuumsystem. S_{T300} und S_{T80} sind die Nennsaug-
vermögen der Turbomolekularpumpen. C_{Rohr} ist der Leitwert zwischen Position 1
und 2 und C_{Ofen} ist der Leitwert der Verbindung zwischen der Turbopumpe T80
und Position 2.

In Abb. 3.6 ist der Gasfluss im Vakuumsystem mit den jeweiligen Lei-
tungswerten der Verbindungselemente dargestellt. Mit Hilfe der Gln. (3.11)-
(3.14) und (3.16) lassen sich die Leitwerte und die jeweiligen Drücke in un-
serem Vakuumsystem bestimmen, wobei stets angenommen wird, dass der
Fluss Q im gesamten System unverändert bleibt.

Da die Turbomolekularpumpe direkt mit der Hauptkammer verbun-
den ist, ist anzunehmen, dass der Druck in der Kammer an jeder Stelle
annähernd gleich ist und somit $p_1 = 3 \cdot 10^{-9}$ mbar beträgt. Insbesonde-
re ist das effektive Saugvermögen an Position 1 näherungsweise gleich dem
Saugvermögen der Pumpe T300.

Der Übergang zwischen Haupt- und Ofenkammer kann durch ein gera-
des Leitungsstück mit einem runden Querschnitt von insgesamt 304 mm
Länge und mit einem Innendurchmesser von 35 mm beschrieben werden. Es
besteht aus einem Übergangsrohrstück, einem Pneumatikventil und einem
Reduzierkreuz.

Für die gesamte Strecke zwischen Hauptkammer und Ofenkammer (zwi-
schen Position 1 und 2: $l = 346$ mm) ergibt sich ein Leitwert von $C_{Rohr} = 0,015 \text{ m}^3/\text{s} = 15 \text{ l/s}$. Der Druck an Position 2 ist, bei einem Saugvermögen
der Turbomolekularpumpe T300 von $S_{T300} = 220 \text{ l/s} = 0,22 \text{ m}^3/\text{s}$, um
einen Faktor 15,7 vergrößert und beträgt $p_2(S_{T300}) = 4,7 \cdot 10^{-5}$ mbar. Eben-
3.2. VAKUUMSYSTEM

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hauptkammer</th>
<th>Ofenkammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>effektive Länge (mm)</td>
<td>346</td>
<td>462</td>
</tr>
<tr>
<td>Durchmesser (mm)</td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>Saugvermögen (m³/s)</td>
<td>0,220</td>
<td>0,048</td>
</tr>
<tr>
<td>Leitwert C_2 (m³/s)</td>
<td>0,0150</td>
<td>0,1206</td>
</tr>
<tr>
<td>Druck p_2 (mbar)</td>
<td>$4,7 \cdot 10^{-8}$</td>
<td>$7,0 \cdot 10^{-8}$</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Vergleich der Leitwerte und Drücke im Vakuumsystem mit den jeweiligen Turbomolekularpumpen T300 und T80.

falls an Position 2 kann der Druck mit dem Saugvermögen der Turbomolekularpumpe T80 bestimmt werden. Dafür wird ein Ofenkammerdruck von $p_2 = 5 \cdot 10^{-8}$ mbar angenommen. Der Leitwert der Verbindung zwischen T80 und Position 2 beträgt $C_{\text{Ofen}} = 0,1206$ m³/s = 120,6 l/s. Für den Druck ergibt sich bei einem Saugvermögen der Turbomolekularpumpe T80 von $S_{T80} = 48$ l/s = 0,048 m³/s $p_2(S_{T80}) = 7,0 \cdot 10^{-8}$ mbar. In der Tabelle 3.1 sind nochmals alle berechneten Werte zur Übersicht eingetragen.

Beim Erhitzen der Knudsen-Zelle steigt der Druck in der Ofenkammer an. Um einen Druckanstieg in der Hauptkammer zu vermeiden, muss ein Leitungselement mit einem geeigneten Leitwert eingesetzt werden. Für einen Druck von $p_1 = 3 \cdot 10^{-9}$ mbar in der Hauptkammer und einen von $p_2 = 5 \cdot 10^{-5}$ mbar in der Ofenkammer ergibt sich mit dem Nennsaugvermögen der Turbomolekularpumpe T300 S_{T300} ein Leitwert von

$$C_2 = \frac{S_{T300}}{(\frac{p_1}{p_2} - 1)} = 1,32 \cdot 10^{-5} \text{m}^3/\text{s}.$$ (3.18)

Aus dem berechneten Leitwert können die Dimensionen für das benötigte Leitungselement bestimmt werden. In diesem Aufbau wurde eine Blende mit einem Öffnungsdurchmesser von 2 mm in den Übergang zwischen Haupt- und Ofenkammer an Position 3 eingesetzt. Dieser Wert resultiert aus der Annahme eines Hauptkammerdruckes von $p_1 = 3 \cdot 10^{-9}$ mbar und eines Ofenkammerdruckes (bei Betrieb der Knudsen-Zelle) von $p_2 = 1 \cdot 10^{-6}$ mbar. Dafür ergibt sich der genaue Wert von $d = 2,7$ mm.

Nach dem Evakuieren des Vakuumsystems vor der ersten Messung wurden Drücke von $p_1 = 1 \cdot 10^{-10}$ mbar und $p_2 = 3,2 \cdot 10^{-8}$ mbar erreicht. Während des Erhitzens der Knudsen-Zelle ist der Hauptvakuumdruck auf einen Wert von $8,9 \cdot 10^{-8}$ mbar und der Ofenkammerdruck auf $5,4 \cdot 10^{-5}$ mbar gestiegen. Trotz des hohen Druckanstiegs in der Hauptkammer hat dies die Messung zu keinem Zeitpunkt beeinflusst. Die eingebaute Blende hat neben der Funktion des differentiellen Pumpens auch die der Kollimation des Molekülstrahles.
3.3 Hauptkammer

In Abb. 3.7 sind die Schnitzeichnungen des Vakuumsystems in der Seitenansicht und in der Ansicht von oben mit den einzelnen Vakuumkomponenten dargestellt. Die Funktionen und Kenndaten der Komponenten können Tabelle A.1 entnommen werden.

a) Seitenansicht

![Seitenansicht der Vakuummapparatur](image1)

b) Ansicht von oben

![Ansicht von oben der Vakuummapparatur](image2)

Abbildung 3.7: Schematische Darstellung der Vakuummapparatur in der Ansicht von der Seite (a) und von oben (b). Die Beschreibung der Komponenten kann Tabelle A.1 entnommen werden.

Die Hauptkammer ist ein liegender Zylinder mit einer Länge von 489 mm und einem Innendurchmesser von 200 mm, an dem 13 Flansche angebracht sind. Die Kammer ist aus Edelstahl 304 gefertigt und besitzt ein Volumen
3.3. HAUPTKAMMER

von ca. 15 l. In der Kammer befindet sich in der unteren Hälfte ein eingeschweißtes Lochblech (24) mit Gewindelöchern (M6), das zur vakuumseitigen Befestigung von Komponenten dient. An der äußeren Unterseite der Kammer sind vier Anschweißwinkel mit jeweils einem Gewindeloch (M6) angebracht, wodurch der Aufbau auf Säulenstiften ermöglicht wird. Mit der Länge der Stifte kann die Höhe der Kammer variiert werden, wobei 105 mm lange Säulenstifte (Thorlabs) mit einem Durchmesser von 1 Zoll verwendet wurden. Die Kammer kann beidseitig mit einem Deckel verschlossen werden. Mit dem hinteren Deckel (9) wird die Verbindung zur Ofenkammer hergestellt. Auf dem vorderen Deckel (1) befinden sich drei weitere Flansche, wobei sich in der Mitte ein Fenster (Viewport) (2) befindet, durch das der Eintritt eines Laserstrahles erfolgen kann.

In der Hauptkammer befindet sich der Faserhalter auf dem die ultradünne Glasfaser fixiert ist. Die Fasertaille wird senkrecht und auf der Höhe des auftreffenden Molekülstrahles ausgerichtet, dafür wird der Faserhalter auf Säulenstiften mit Gewindestiften (M4) fixiert.

Zur Unterbrechung des Molekülstrahles wurde in die Kammer ein Shutter (8) eingebaut. Dieser ist ebenfalls mit einer Drehdurchführung über einen Edelstahlblechstreifen verbunden. Der Shutter ist ein quadratisches Edelstahlblechstück mit der Seitenlänge von 44 mm.

Für später geplante Fluoreszenzmessungen wurde eine Multimodefaser (siehe Kap. 3.3.2) eingebaut. Dafür wird ein Faserende senkrecht zur Fasertaille ausgerichtet und sehr nah herangeführt. Die Multimodefaser ist in einem Edelstahlrührkranz, das mit einer Lineardurchführung verbunden ist, mit UV-Kleber fixiert und gegen die Molekülstrahlrichtung ausgerichtet, damit keine Moleküle auf dem Faserende adsorbieren können. Die Fluoreszenz-
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

faser wird durch eine Faserdurchführung (14) (wie (3)) aus dem Vakuum geführt. Die zweite Öffnung im Teflonkegel kann durch ein beliebiges Faserstück gefüllt werden.

Die Position der Multimodefaser (siehe Kap. 3.3.2) kann mit einem xyz-System, das aus einem xy-Manipulator (Mewasa Flex) und einer Lineardurchführung (LewVac) (15) besteht, eingestellt werden. Der xy-Manipulator kann um \(\pm 12,5 \text{ mm} \) mit einer Auflösung von \(1 \mu \text{m} \) in beide Richtungen bewegt werden. Dieser besteht im Prinzip aus einem Wellbalg, der in einem Gestell mit zwei sich unabhängig voneinander bewegenden Tischen fixiert ist. Der xy-Manipulator ist an einem drehbaren DN63CF-Flansch befestigt. Mit Hilfe der Lineardurchführung, die einen Weg von 50,8 mm macht, kann die Multimodefaser aus dem Strahlengang entfernt werden. Eine präzise Einstellung der Position kann in 25 \(\mu \text{m} \) Schritten vorgenommen werden. Es muss berücksichtigt werden, dass der Stift der Lineardurchführung eine sichtbare Präzessionsbewegung macht, was bei der Positionseinstellung zur Zerstörung der Faser führen könnte.

Der optimalen Abstand zwischen der Multimode- und der ultradünnen Faser, der sich im \(\mu \text{m} \)-Bereich befindet, kann mit Hilfe einer Kombination aus einer Kamera (Guppy F-046B, Allied Vision Technologies), einem Tubus (InfiniTube Standard, Infinity Photo-Opical Company), der das Bild auf den Kamerachip fokussiert, und einem Mikroskopobjektiv (G Plan Apo 20x, Mitutoyo) (Kap. 3.3.3) realisiert werden. Da Objektive üblicherweise nicht vakuumgeeignet sind, musste dieses atmosphärenseitig angebracht werden. Zu diesem Zweck wurde speziell für das Objektiv eine Vakuumkomponente (Re-Entrant Flansch) (16) entwickelt, die in die Vakuumkammer hineinreicht. Diese besteht aus einem Flansch und einem angeschweißten Rohr, an dessen Ende ein Fensterglas mit einer Dicke von 3,5 mm eingefasst ist. Da sich dadurch zwischen dem Objektiv und der Faser eine Glasscheibe befindet, muss das Objektiv auf deren Dicke korrigiert sein. Um den Arbeitsabstand des Objektivs von 29,42 mm einzuhalten beträgt die Länge samt Flansch 138 mm. Der Innendurchmesser des Rohres beträgt 47,50 mm, wobei das Objektiv einen Außendurchmesser von 34 mm besitzt. Aufgrund des geringen Sichtfeldes muss die Kamera-Objektiv-Kombination im Rohr möglichst spielfrei fixiert werden. Dafür wurde ein Adapter eigens angefertigt.

Auf der Höhe der ultradünnen Glasfaser sind seitlich zwei Viewports (6), (12) angebracht. Mit diesen wird neben dem Eintritt eines Laserstrahles in die Kammer auch die Beleuchtung der Faser ermöglicht. Dies erlaubt Aufnahmen mit der Kamera, die von oben auf die Faser gerichtet ist (16).

Es wurden zusätzlich zwei Flansche angebracht (4), (7), die vorerst unge nutzt bleiben, die jedoch für zukünftige Anwendungen zur Verfügung stehen.

Die Turbomolekularpumpe ist direkt mit der Vakuumkammer (11) über einen DN100CF-Flansch verbunden. Der Druck wird von einem Vakuummeter schräg über der Pumpe gemessen (10).
3.3.1 Quarzmikrowaage

3.3.2 Fluoreszenzfaser

\[
\begin{align*}
\text{Abbildung 3.8:} & \text{ Bestimmung des Abstandes zwischen der ultradünnen Glasfaser und der Multimodefaser über deren numerische Apertur.} \\
\text{Der Abstand der ultradünnen Glasfaser muss optimal eingestellt werden, um eine größtmögliche Einkopplung der Fluoreszenzstrahlung zu gewährleisten. Dieser wird durch die numerische Apertur (NA) der Multimodefaser}
\end{align*}
\]
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

Die NA eines Lichtwellenleiters ist ein Maß für die in diesen eingekoppelte Lichtleistung. Sie hängt vom Winkel ab, unter welchem das Licht in den Lichtwellenleiter eingekoppelt wird. Die Bestimmung des optimalen Abstandes \(d \) zwischen der ultradünnen Glasfaser und dem Multimodefaserende wird in Abb. 3.8 verdeutlicht. Die NA einer Faser ist gegeben durch

\[
NA_F = n_0 \cdot \sin(\theta_0) \leq n_1 \cdot \sin(\theta_c) = \sqrt{n_1^2 - n_2^2},
\]
(3.19)

wobei \(n_0 \) der Brechungsindex der umgebenden Luft, \(n_1 \) und \(n_2 \) die Brechzahlen des Faserkerns und des Fasermantels sind. \(\theta_0 \) ist der Einfallswinkel eines Lichtstrahles und \(\theta_c \) der kritische Winkel, bei dem noch der Strahl in der Faser geführt wird. Mit einer numerische Apertur der Multimodefaser von 0,13 ergibt sich der Abstand \(d = 65,6 \, \mu m \).

3.3.3 Kamera-Objektiv-Kombination

Die Wahl des Mikroskopobjektivs wird aufgrund des aufzulösenden Objektes getroffen. Dafür muss das Auflösungsvermögen, das als der kleinste Abstand zweier Punkte auf einer Probe, die noch separat aufgelöst werden können, definiert ist, des Objektivs bekannt sein. Das Auflösungsvermögen \(R \) wird durch drei Parameter bestimmt: die Wellenlänge \(\lambda \) des beleuchtenden Lichtes, der halbe Öffnungswinkel \(\theta \) des Lichtkegels der vom Objektiv eingefangen werden kann und der Brechungsindex \(n \) zwischen Probe und Objektivlinse:

\[
R = \frac{1,22 \cdot \lambda}{n \sin(\theta)},
\]
(3.20)

wobei \(NA_{\text{Obj}} = n \sin(\theta) \) die numerische Apertur des Objektivs ist, die laut Herstellerangaben 0,28 beträgt. Für das Auflösungsvermögen bei einer Wellenlänge von 550 nm ergibt sich \(R = 2,4 \, \mu m \). Diese Wellenlänge wird üblicherweise verwendet, da hier das menschliche Auge optimal empfindlich ist. Der Faktor 1,22 berücksichtigt alle möglichen Störfaktoren, die das Auflösungsvermögen verschlechtern (z.B. Abbildungsfehler oder Verschmutzungen).

Laut Herstellerangaben beträgt das Auflösungsvermögen 1,0 \(\mu m \), der mit dem berechneten Wert von 2,4 \(\mu m \) nicht übereinstimmt. Dies hängt mit der Tatsache zusammen, dass Mikroskopobjektive in der Regel in einem Mikroskop eingesetzt werden und zur Berechnung des Auflösungsvermögens das gesamte optische System des Mikroskops berücksichtigt wird. Da die Ausleuchtung der Probe sehr viel zur Auflösung beiträgt, wird neben der Vergrößerungsoptik auch die Ausleuchtungsoptik (der Kondensor) berücksichtigt. Für das Gesamtsystem ist das Auflösungsvermögen definiert durch:

\[
R = \frac{1,22 \cdot \lambda}{NA_{\text{Obj}} + NA_{\text{Kond}}},
\]
(3.21)
3.3. HAUPTKAMMER

wobei NA_{Kond} die numerische Apertur des Kondensors ist. Bei einer optimalen Einstellung der NA des Objektivs zu der des Kondensors, d.h. $NA_{\text{Obj}} = NA_{\text{Kond}}$, wird Gl. (3.21) zu $R = 0,61 \cdot \lambda / NA_{\text{Obj}}$ vereinfacht [42, 43].

Die Anzahl der Pixel pro optischem Bildbereich darf daher nicht zu gering ausfallen. Um Informationsverluste zu vermeiden, muss die digitale Ortsauflösung größer oder gleich der optischen Auflösung sein, also dem Auflösungsvermögen des Mikroskops. Diese Anforderungen sind im Nyquist-Theorem formuliert [42]. Dieses besagt, dass beim Erfassen des kleinsten Details zwei Pixel für jedes Charakteristikum notwendig sind. Für hochaufgelöste Bilder muss das Kriterium auf drei Pixel pro Charakteristikum erweitert werden. Ferner kann das Theorem wie folgt formuliert werden:

$$R \cdot M = 3 \cdot PG \text{ mit } M = M_{\text{Obj}} \cdot M_{\text{Adap}}, \tag{3.22}$$

wobei R die optische Auflösung des Objektivs, PG die Pixelgröße und M die resultierende Vergrößerung auf dem Kamerasensor ist. Diese wird durch die Multiplikation von Objektivvergrößerung M_{Obj} und der Vergrößerung des Kameraadapters (Infinitube) M_{Adap} bestimmt.

Außerdem gilt für die Pixelgröße in der Horizontalen und der Vertikalen:

$$PG_{H,V} = \frac{CG_{H,V}}{PA_{H,V}} \cdot \tag{3.23}$$

wobei CG die Größe des CCD-Chips und PA die Anzahl der Pixel ist. Ein $1/2''$-Sensor misst $H \times V = 6,4 \text{mm} \times 4,8 \text{mm}$.

Das verwendete Mikroskopobjektiv besitzt eine Vergrößerung $M_{\text{Obj}}=20$ und die Infinitube $M_{\text{Adap}} = 1$ (auf einen $1/2''$-Chip), womit sich eine Gesamtvergrößerung von $M = 20$ ergibt. Mit dem bereits berechneten Auflösungsvermögen $R = 2,4$ μm und mit der Annahme von drei Pixel pro Charakteristikum ergibt sich für die Anzahl der Pixel in der Horizontalen und der Vertikalen:

$$PA_{H} = \frac{3}{R \cdot M} \cdot CG_{H} = 400,$$

$$PA_{V} = \frac{3}{R \cdot M} \cdot CG_{V} = 300,$$
Eine Schwarz-Weiß-Kamera mit einem 1/2″-Sensor (780 × 582) wird für die Aufnahmen verwendet. Die Auflösungstiefe beträgt 8 Bit und die Bildwiederholungsrate maximal 49 fps (bei voller Auflösung). Schwarz-Weiß-Kameras sind in der Regel empfindlicher als Farbkameras, die Rauscheigenschaften sind besser und die IR-Wellenlängen werden nicht ausgefiltert.

In Abb. 3.9 ist eine Aufnahme der Multimodefaser mit einem Durchmesser von 125 µm und der ultradünnen Glasfaser mit einem Durchmesser von 320 nm mit dem Kamerasystem dargestellt.

3.4 Ofenkammer

Die Ofenkammer besteht aus einem T-Stück (21) und einem Reduzierkreuz (23) (Abb. 3.7), an dessen Ende die Turbomolekularpumpe angebracht ist. Die Effusionszelle (Knudsen-Zelle) (22), in der der Molekülstrahl erzeugt wird, ist am Ende des T-Stücks angeflanscht. Das Reduzierkreuz dient zusätzlich als Abstandhalter für das Vakuummeter und die Turbopumpe, da die Knudsenzelle bei hohen Temperaturen betrieben wird.
3.4. OFENKAMMER

<table>
<thead>
<tr>
<th>T (K)</th>
<th>p (mbar)</th>
<th>Λ (m)</th>
<th>K_n(1mm)</th>
<th>K_n(4mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>573</td>
<td>1</td>
<td>7,90 \cdot 10$^{-3}$</td>
<td>7,9</td>
<td>1,975</td>
</tr>
<tr>
<td></td>
<td>10$^{-3}$</td>
<td>7,90</td>
<td>7900</td>
<td>1975</td>
</tr>
<tr>
<td>1273</td>
<td>1</td>
<td>1,76 \cdot 10$^{-4}$</td>
<td>17,6</td>
<td>4,400</td>
</tr>
<tr>
<td></td>
<td>10$^{-3}$</td>
<td>17,60</td>
<td>17600</td>
<td>4400</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Vergleich der mittleren freien Weglänge und Knudsenzahl für zwei Temperaturen.

3.4.1 Effusiver Molekülstrahl

Ein Molekülstrahl entsteht, wenn Moleküle im gasförmigen Zustand durch eine Öffnung ins Vakuum eintreten. Zur Charakterisierung einer Molekülstrahlquelle wird die Knudsenzahl (Gl. (3.7)) herangezogen, wobei die mittlere freie Weglänge Λ gegeben ist durch

$$\Lambda = \frac{1}{\sqrt{2\pi n}}. \quad (3.24)$$

σ ist der Stoßquerschnitt und liegt in der Größenordnung der Fläche der klassischen Elektronenbahn $\sigma \approx \pi a_0^2 = 10^{-16}$ cm², wobei a_0 der Bohrsche Radius ist. Hierin ist n die Teilchendichte, die für ein ideales Gas über $n = kT/p$ ausgedrückt werden kann, k die Boltzmann-Konstante und T die Temperatur.

Ist für einen Strahl die Bedingung $K_n > 1$ erfüllt, so wird dieser als effusiv bezeichnet und die Stöße zwischen den Teilchen im Ofen können vernachlässigt werden ($\Lambda_{\text{Quelle}} \gg d$). Die Wand, in der sich die Öffnung befindet, sollte dünn sein damit keine Stöße im Wandkanal erfolgen. Bei $K_n < 1$ handelt es sich um einen Düsen- oder Überschallstrahl. Hier haben die Teilchen im Ofen eine kleine mittlere freie Weglänge und es treten häufig Stöße untereinander auf, bevor sie durch die Öffnung austreten.

Die Geschwindigkeit der Moleküle eines austretenden Strahles einer effusiven Quelle wird durch die Maxwellsche Geschwindigkeitsverteilung bei einer Temperatur T und einer mittleren Strahlgeschwindigkeit \bar{v} beschrieben. Die Anzahl N der austretenden Moleküle pro Zeiteinheit wird durch folgende Formel beschrieben [44, 45, 46]:

$$\frac{dN}{dt} = n_0 f(v) \frac{d\Omega}{4\pi} v \cos \theta S dv, \quad (3.25)$$
KAPITEL 3. AUFBAU DER VAKUUMAPPARATUR

wobei n_0 die Teilchendichte in der Quelle, $f(v)$ die Maxwellsche Geschwindigkeitsverteilung in der Quelle, $d\Omega$ das Raumwinkelelement, in das die Quelle emittiert, v die Geschwindigkeit der austretenden Teilchen, θ der Winkel zur Öffnungsnormalen, S die Öffnungsfläche und dv die Breite der beobachteten Geschwindigkeitsgruppe ist. Mit der Maxwell-Boltzmann-Verteilung:

$$f(\tilde{v})d\tilde{v} = \frac{4}{\sqrt{\pi}} \tilde{v}^2 e^{-\tilde{v}^2} d\tilde{v}, \quad (3.26)$$

wobei für $\tilde{v} = v/v_w$ gilt und $v_w = \sqrt{2kT/m}$ die wahrscheinlichste Geschwindigkeit ist, erhält man durch Einsetzen in Gl.(3.25):

$$\frac{dN}{dt} = \frac{n_0 S}{\pi^{3/2}} v_w^3 e^{-\tilde{v}^2} \cos \theta \cos \theta d\Omega. \quad (3.27)$$

Als Geschwindigkeitsverteilung in einem Strahl ergibt sich somit:

$$f_{\text{Strahl}}(\tilde{v}) = 2\tilde{v}^3 e^{-\tilde{v}^2}, \quad (3.28)$$

wobei $v_w S = \sqrt{3/2} v_w$ die wahrscheinlichste Geschwindigkeit und $\bar{v}_S = 3/4\sqrt{\pi} v_w$ die mittlere Geschwindigkeit im Strahl ist. Es ist zu beachten, dass im Gegensatz zur Maxwellverteilung im isotropen Raum die Geschwindigkeitsverteilung eines Strahles proportional zu \tilde{v}^3 statt \tilde{v}^2 ist.

Wird über alle Geschwindigkeiten integriert, so ergibt sich für die Intensität:

$$I(\theta)d\Omega = \frac{n_0 \bar{v}}{4} S \cos \theta \frac{d\Omega}{\pi}, \quad (3.29)$$

wobei $\bar{v} = (2/\sqrt{\pi}) v_w$ die mittlere Geschwindigkeit des Gases in der Quelle ist. Die Gesamtrate von Molekülen, die die Öffnung verlassen ist also $n_0 \bar{v} S/4$. Die zugehörige Winkelverteilung folgt einem kosinusartigen Verlauf.

3.4.2 Knudsen-Zelle

Eine Knudsen-Zelle nutzt das Prinzip der Molekulareffusion und ist kommerziell erwerblich. Das Material, das verdampft werden soll, wird in einem isothermisch abgeschlossenen Gehäuse mit einer Öffnung auf die erforderliche Verdampfungstemperatur gebracht. Der Molekülstrahl wird durch Kollimation zu einem elektrisch neutralen Materialstrahl geformt. Der Vorteil dieser Art von Quelle besteht darin, dass man Bedeckungen zwischen Submonolagen und kontinuierlichen Filmen reproduzierbar aufbringen kann.

Das Ofengehäuse, das mit Wasser oder Flüssigstickstoff gekühlt werden kann, ist mit einer elektrischen Durchführung und einer Shuttervorrichtung auf einem DN35CF-Flansch montiert. Der Ofen enthält ein Steckmodul, das aus einem Tiegel, einem Heizelement und einem Hitzeschutzschild besteht. Der Tiegel wird mit einer Tantalfolie geheizt, die mit einem pyrolytischen Bornitriddschutz isoliert ist. Der Haupttiegel ist aus Graphit gefertigt, in
3.4. OFENKAMMER

Da sich die Eigenschaften des Heizelementes mit der Temperatur ändern, müssen Eingangsleistung und Temperatur reguliert werden. Ein PID (Proportional, Integral, Differential)-Regler wird über einen Mikrocontroller gesteuert. Der Mikrocontroller berechnet die notwendige Leistung, um die erforderliche Temperatur zu erreichen und in spezifizierten Grenzen zu halten.

Da bei dem Ausheizprozess der für die Temperaturregelung erforderliche Temperatursensor zerstört wurde, konnte die Knudsen-Zelle nicht mit dem PID-Regler angesteuert werden. Als Übergangslösung wurde ein DC-Netzgerät (TOE 8841, Toellner Electronic Instrumente GmbH), welches eine stabilisierte Stromversorgung gewährleistet, direkt an die Zelle angeschlossen. Somit konnte die Zelle erhitzt werden, wobei die Temperatur einzig über die Verdampfung der Moleküle ermittelt werden konnte.
Kapitel 4

Spektroskopie von PTCDA im Vakuum

In diesem Kapitel wird auf die Einzelheiten der Inbetriebnahme der Vakuumapparatur eingegangen. Es werden erste Messungen präsentiert, um die Vorgänge im Vakuum zu charakterisieren. Insbesondere können die Vakuummessungen mit denen an Luft verglichen und dabei eine Verbesserung der Bedingungen anhand der Daten nachgewiesen werden.

4.1 Inbetriebnahme der Vakuumapparatur

Experimente können erst durchgeführt werden, wenn die Glasfaser eingebaut und justiert, die Kammer evakuiert und gegebenenfalls ausgeheizt wurde. Dabei muss auf eine genaue Arbeitsweise geachtet werden. Da bei der ersten Inbetriebnahme einige Schwierigkeiten aufgetreten sind, soll auf deren Beschreibung und Lösungsansätze nicht verzichtet werden.

4.1.1 Einbau der ultradünnen Glasfaser

Nach der ersten Messung wurde die ultradünne Glasfaser in der Kammer durch eine neue ausgetauscht. Allerdings sind beim Einbau große Schwierigkeiten aufgetreten. Beim Hineinstellen verschlechterte sich die Transmissi
sion rapide und konnte nach dem Herausnehmen vollständig wiederherge-
stellt werden. Um eine möglichst hohe Fasertransmission zu erhalten, musste
nach dem Hineinstellen zügig die Kammer geschlossen und während des An-
schraubens des Deckels mit der Vorpumpe ausgepumpt werden. Dies erlaubt
allerdings nicht, die Faser unter dem Mikroskopobjektiv justieren zu können.
Eine geeignete Lösung des Problems könnte in einer besseren Belüftung der
Kammer während des Einbaus der Faser bestehen.

4.1.2 Evakuieren

Anfangs wurden die Haupt- und die Ofenkammer separat, d.h. mit geschlos-
senem Pneumatikventil, evakuiert. Zum Evakuieren der Hauptkammer wird
erst mit der Vorvakumpumpe ein Vordruck erzeugt, damit die Turbomole-
kularpumpe gestartet werden kann. Wie schon in Kap. 3.2 angesprochen,
muss Anfangs auf ein langsames Öffnen des Ventils geachtet werden, um
auftretende Turbulenzen im Bereich der viskosen Strömung zu vermeiden.

4.1.3 Lecks

Beim ersten Versuch die Hauptkammer zu evakuieren wurden schwerwiegen-
de Schäden festgestellt. Im Folgenden soll das Ermitteln der Undichtigkeiten
dargelegt werden.

Beim Evakuieren mit der Vorpumpe hatte sich nach einer Wartezeit von
mehreren Stunden kein besserer Vordruck als 1,1 \cdot 10^{-1} \text{ mbar} eingestellt,
obwohl es in der Regel möglich ist, in sehr kurzer Zeit einen Vordruck im Be-
reich von \(p < 10^{-2} \text{ mbar} \) zu erreichen. Ungeachtet des verhältnismäßig hohen
Vordruckes wurde die Turbomolekularpumpe gestartet. Trotz dessen stellte
sich kein besserer Druck als 1,3 \cdot 10^{-3} \text{ mbar} ein. Aufgrund dieser Tatsache
wurde ein Helium-Lecktest durchgeführt, bei dem jeweils eine große Undich-
tigkeit (Leckrate: ca. 10^{-2} \text{ mbar} \cdot \text{l/s}) in zwei verschiedenen Schweißnähten
ermittelt wurde. Nach der Reparatur konnte schließlich ein Enddruck von
5,0 \cdot 10^{-7} \text{ mbar} erzielt werden.

Nach dem Ausheizen (siehe Kap. 4.1.4) und dem anschließenden Abkühlen
der Hauptkammer stieg der Druck über den ursprünglichen Wert, obwohl
sich dieser um mehrere Größenordnungen vermindern sollte. Da sich die
Komponenten beim Erhitzen ausdehnen und sich beim Abkühlen wieder
zusammenziehen, können Lücken und dadurch Undichtigkeiten zwischen den
Flanschen entstehen. Daher wurden alle Schrauben und Swagelok-Verschrau-
bungen der Faserdurchführungen nachgezogen. Daraufhin fiel der Druck auf
2,8 \cdot 10^{-9} \text{ mbar}, der allerdings kurze Zeit später wieder auf 2,0 \cdot 10^{-8} \text{ mbar}
anstieg.

Eine Lecktestanalyse mit Hilfe von Aceton ergab ein Leck im drehbaren
Flansch ((Nr.15) in Abb. 3.5). Jedoch muss bei der Verwendung von Ace-
ton (oder Alkohol) zur Lecktestanalyse beachtet werden, dass das Aceton
4.1. Inbetriebnahme der Vakuumapparatur

die undichte Stelle *verschließt*, d.h. es stellt sich nach einem anfänglichen, schlagartigen Anstieg des Druckes ein niedrigerer Druck ein als vor dem Einspritzen. Dieser Anstieg kann in Abhängigkeit von der Leckgröße mehrere Größenordnungen betragen. Der niedrige Druck wird solange gehalten bis das Aceton vollständig ausgegast ist, was mehrere Stunden andauern kann. Danach steigt der Druck wieder auf den ursprünglichen Wert an.

Eine Möglichkeit solche Lecks zu verschließen bietet eine zähe Leckversiegelungsfüssigkeit (Leak Sealant, Kurt J. Lesker Co.), die für Leckraten bis zu 10^{-3} mbar·l/s geeignet ist. Diese wird auf die betroffene Stelle mit einem Pinsel aufgetragen und muss einige Stunden aushärten. Nach der Versiegelung des Lecks mit dem Leak Sealant ist der Druck innerhalb von 6 Stunden von $2,8 \cdot 10^{-9}$ mbar auf einen Wert von $8,0 \cdot 10^{-10}$ mbar gesunken und nach weiteren 21 Stunden konnte ein Druck von $4,0 \cdot 10^{-10}$ mbar erreicht werden.

4.1.4 Ausheizen

Zum Ausheizen wurde ein 5 m langes PTFE-isoliertes Heizband mit Glasseidenummantelung (TeMS 6, 1500 W/m, Vacom), das eine maximale Oberflächentemperatur von 260 °C erreicht, verwendet. Um eine gleichmäßige Wärmeverteilung zu gewährleisten muss die Kammer mit mehreren Schichten Aluminiumfolie eingehüllt werden, wobei darauf zu achten ist, dass ein Luftpolster zwischen Kammer und erster Schicht gebildet wird. Für die Stromversorgung wurde das Heizband an einen Transformator angeschlossen, mit dem die Temperatur eingestellt werden kann.

Eine langsame Temperaturänderung von 2 °C bis 3 °C pro Minute ist wegen der Viewports erforderlich, da sich sonst das Glas bei zu schneller Tem-
peraturänderung ausdehnt bzw. zusammenzieht und dabei zerstört werden kann. Die Temperatur wurde mit Hilfe eines Tempeaturensors beobachtet.

Um die zulässige Temperatur nicht zu überschreiten, wurde zwischen Transformator und Heizband eine Relais-Schutzschaltung installiert, die über einen Tempeaturensor gesteuert wird. Für den Fall, dass das Relais durch einen Defekt ausfallen und damit die Temperatur weiter ansteigen sollte, war das Bestreben die Stromversorgung des Heizbandes über den Transformator für die erforderliche Temperatur exakt einzustellen.

Bei einer Temperatur von ca. 150° C ist der Druck von einem Wert 5,0 \cdot 10^{-7} mbar auf einen Wert von 6,3 \cdot 10^{-6} mbar gestiegen und etwa 8 h später auf einen Wert von 2,8 \cdot 10^{-7} mbar wieder gesunken. Nach einer Heizperiode von 8 Tagen wurde die Kammer wieder auf Raumtemperatur abgekühlt, woraufhin sich ein höherer Druck eingestellt hatte als vor dem Ausheizprozess, obwohl dieser um mehrere Größenordnungen fallen sollte. Wie bereits in Kap. 4.1.3. beschrieben, war dieses Verhalten auf Lecks der Kammer zurückzuführen.

4.1.5 Knudsen-Zelle

Die Erzeugung des Molekülstrahles erfolgt in einer Knudsen-Zelle, die in Kap. 4.1.2 beschrieben wurde. Für die Kollimation des Molekülstrahles wurden für die erste Messung zwei Blenden mit einem Öffnungsdurchmesser von 1 mm in den Bornitridtiegel der Knudsen-Zelle eingesetzt. Für die zweite Messung wurden die Aperturen entfernt.

Bei der ersten Messung wurde der Strom in 0,5 A Schritten erhöht. Die Moleküle wurden erst bei einer Heizleistung von ca. 100 W detektiert, die einer Temperatur von ca. 1300 °C entspricht. Dies lässt sich mit während der Aufdampfphase im Tiegel gekippten Aperturen begründen, was sich beim Ausbauen der Knudsen-Zelle herausstellte. Während des Erhitzens der Knudsen-Zelle hatte sich der Druck in der Hauptkammer von 2,0 \cdot 10^{-10} mbar auf 8,9 \cdot 10^{-8} mbar und in der Ofenkammer von 3,2 \cdot 10^{-8} mbar auf 5,4 \cdot 10^{-5} mbar erhöht.

Um dies bei der zweiten Messung zu vermeiden, wurden hier nach dem Befüllen der Zelle die Aperturen nicht mehr eingesetzt und der Strom in 0,2 A Schritten erhöht. Schließlich wurden Veränderungen im Spektrum bei
4.2. ERSTE MESSUNGEN IN DER VAKUUMAPPARATUR

einer Leistung von 18 W sichtbar. Dabei blieb der Druck in der Hauptkammer von $1,0 \cdot 10^{-8}$ mbar unverändert, wohingegen dieser in der Ofenkammer von $1,0 \cdot 10^{-7}$ mbar auf $5,0 \cdot 10^{-5}$ mbar anstieg.

4.2 Erste Messungen in der Vakuumapparatur

Die Absorbanzmessungen wurden mit einer HP-460 Faser (Cutoff bei einer Wellenlänge von 430 nm, Thorlabs) durchgeführt, die auf einen Taillendurchmesser von 320 nm und eine Taillenlänge von 1 mm gezogen wurde.

![Abbildung 4.1: Beispielspektrum der ersten Absorbanzmessung im Vakuum.](image)

Vor der ersten Messung konnten nach dem Ausheizen und dem Beheben aller Defekte Drücke von $1 \cdot 10^{-10}$ mbar in der Haupt- und $3,2 \cdot 10^{-8}$ mbar in der Ofenkammer erreicht werden. Da beide Kammern vor dem Experiment separat evakuiert wurden, erfolgte beim Öffnen des Pneumatikventils ein geringer Anstieg des Druckes in der Hauptkammer auf einen Wert von $2,0 \cdot 10^{-10}$ mbar. Für die Absorbanzmessungen wurde ein Ende der Glasfaser an eine Weißlichtquelle (AQ-4303B, Ando) und das andere Ende an ein Spektrometer (AvaSpec-2048-2, Avantes) angeschlossen. Das Referenz- und Dunkelspektrum wurden für das erste Experiment mit einer Integrationszeit von 100 ms sowie nur über ein Spektrum gemittelt aufgenommen, wobei das
KAPITEL 4. SPEKTROSKOPIE VON PTCDA IM VAKUUM

daraus resultierende Absorbanzspektrum stark verrauscht war. Während der laufenden Messung wurde die Anzahl der gemittelten Spektren von 1 auf 10 geändert. Da jedoch für das Referenz- und Dunkelspektrum die Änderung der Einstellungen nicht vorgenommen werden konnte, führte dies neben der bereits sehr schlechten Anfangstransmission zu einem recht großen Rauschen im Absorbanzsignal. In Abb. 4.1 ist ein Beispielspektrum dargestellt.

4.2.1 Absorbanzspektren

Die Moleküle wurden im ersten Experiment bis zu einer Bedeckung von $\theta = 2,03 \cdot 10^{15}$ m$^{-2}$ ($\eta = 0,30, 0,24\%$ ML) und im zweiten bis $\theta = 4,7 \cdot 10^{15}$ m$^{-2}$ ($\eta = 0,68, 0,56\%$ ML) auf die Fasertaille aufgedampft. Mit Hilfe des integrierten Shutters wurde die Knudsen-Zelle geschlossen und damit der Moleküllstrom unterbrochen.

Auf die graphische Darstellung des Verhaltens der Absorbanzspektren während der Aufdampf- und Agglomerationsphase der ersten Messung wurde aufgrund der schlechten Qualität verzichtet. In Abb. 4.1 wird lediglich ein Beispielspektrum zum Vergleich der Messergebnisse der beiden Vakuummessungen dargestellt. Eine quantitative Auswertung der Messdaten wird dennoch für den Vergleich mit den der zweiten Messung hinzugezogen und in Kap. 4.2.3 behandelt.

Die Absorbanzspektren der zweiten Messung sind in Abb. 4.2 dargestellt, dabei alle 1,4 s ein Spektrum aufgenommen. Zur Bestimmung der Aufdämpf- und Agglomerationsdauer wurde auf die ganze Sekunde abgerundet. Es sollte noch erwähnt werden, dass während der gesamten Messung aufgrund ungeklärter Effekte innerhalb der Vakuumkammer das gesamte Spektrum stetig mit der Zeit angestiegen ist. Die Spektren in Abb. 4.2(b) sind auf diesen Effekt korrigiert.

Wie erwartet ist eine ausgeprägte Peakstruktur bei den Energien $Peak_1 = 2,41$ eV, $Peak_2 = 2,59$ eV und $Peak_3 = 2,78$ eV zu erkennen, die einem Monomerspektrum entspricht. Während der Aufdämpfphase steigt das Absorbanzsignal mit zunehmender Molekülzahl. Nach einer Beschichtungs-dauer von 59 s wurde der Molekülfluss unterbrochen, damit keine Moleküle mehr auf der Taillenoberfläche adsorbiert werden können. Die kleinste Be-
4.2. ERSTE MESSUNGEN IN DER VAKUUMAPPARATUR

Abbildung 4.2: Zeitliche Entwicklung der Absorbanzspektren im Vakuum von PTCDA-Molekülen. Es wird (a) 59 s aufgedampft, (b) danach wird der Molekülstrahl unterbrochen und der Agglomerationsprozess mehrere Tage lang aufgenommen.
deckung, die aufgelöst werden konnte beträgt $\theta = 1,0 \cdot 10^{14} \text{ m}^{-2}$, was einer Molekülzahl von $N = 1,6 \cdot 10^5$ (0,02% einer Monolage) entspricht.

In Abb. 4.2(b) ist nach dem Unterbrechen des Molekülflusses die Veränderung der spektralen Form infolge der Agglomeration dargestellt, wie es schon aus dem Experiment an Luft (Kap. 2.2.2) bekannt ist. Die Agglomeration im Vakuum findet jedoch aufgrund der sehr viel geringeren Wasserbedeckung auf den Oberflächen auf einer wesentlich größeren Zeitskala statt. Während an Luft eine gesamte Veränderung des Spektrums auf einer Minutenskala stattfindet, beträgt die Agglomerationsdauer im Vakuum mehrere Tage. Zudem wurde bei der ersten Messung zusätzlich zur Veränderung des Spektrums eine Abnahme der Absorbanz beobachtet, die einer Desorption von Molekülen von der Faseroberfläche zugeschrieben werden kann.

Das Monomerspektrum, das auf isolierte Moleküle hinweist, nimmt mit der Zeit ab und wird breiter, während sich gleichzeitig das Verhältnis der Höhen von Peak_1 und Peak_2 verändert. Ist das Intensitätsverhältnis kleiner
als eins, dann ist der Anteil an ausgebildeten Dimeren größer als der der Monomere. Danach geht das Dimerspektrum in ein Bulkspektrum über. Die einzelnen Moleküle bilden aufgrund ihrer Beweglichkeit Inseln, wobei dies zwar eine Rotverschiebung aber nur eine sehr schwache Änderung der spektralen Form zur Folge hat. Bilden die Moleküle Stapel aus, wird dies in einer starken Veränderung der spektralen Form bemerkbar. Es ist eine gesamte Verschiebung von ca. 31 meV zu beobachten, wobei diese auf die steigende intermolekulare Wechselwirkung zurückzuführen ist.

Neben der schon bekannten Peakstruktur ist Absorption bei einer Energie von $Peak_4 = 1,87 \text{ eV}$ zu erkennen. Während der Beschichtung ist bereits ein schwacher Anstieg erkennbar. Eine deutliche Ausprägung kann hinterher während der Agglomeration beobachtet werden. In Abb. 4.3 wurden Spektren bei verschiedenen Agglomerationszeiten ausgewählt, um das Verhalten und die Struktur von $Peak_4$ hervorzuheben. Dieser wurde bei dem Experiment an Luft nicht beobachtet und weist selbst eine Struktur auf.

Die Anwesenheit von $Peak_4$ ist ein möglicher Hinweis darauf, dass sich die Moleküle durch Ionen auf der Glasfaseroberfläche partiell aufladen können. Im Experiment an Luft werden die Ladungen, falls vorhanden, von den Wassermolekülen hydratisiert, weshalb der Peak im Spektrum nicht zu beobachten war. Da bei einem Druck von 10^{-9} mbar die Wasserfilmanzahl stark reduziert ist, können die PTCDA-Moleküle Ladungen aufnehmen.

Das PTCDA-Molekül besitzt durch die sechs stark elektronegativen Sau erstoffatome eine hohe Ionisierungsspannung bzw. eine große Elektronenaffinität und wirkt daher als starker Akzeptor. Außerdem reagiert PTCDA mit Kontakt zu Perylen-Tetracarbonsäure. Dabei werden die Anhydrid-Gruppen durch die Wassermoleküle wieder in die hydratierte Form, also die Carbonsäure, überführt [32].

4.2.2 Vorteile des Vakuumaufbaus

Aufgrund der stabilen Bedingungen im Vakuum und der reduzierten Wasserschichten auf Oberflächen konnten deutliche Unterschiede zu den Messungen...
an Luft festgestellt werden. Zum Einen konnte eine Verschiebung der Peakenergien zu höheren Werten festgestellt werden und zum Anderen konnte das sprunghafte Verhalten nach der Unterbrechung des Molekülflusses nicht beobachtet werden.

Abbildung 4.4: Graphische Darstellung der Verschiebung von Peak$_1$ und Peak$_2$ zu niedrigeren Energien mit der Zeit. Es wird jeweils die Position von Peak$_1$ und Peak$_2$ der Messungen im Vakuum und an Luft miteinander verglichen.
4.2. ERSTE MESSUNGEN IN DER VAKUUMAPPARATUR

In Abb. 4.4 sind die Änderungen der Lage der Maxima von \(\text{Peak}_1 \) und \(\text{Peak}_2 \) der Messung im Vakuum und an Luft als Funktion der Zeit aufgetragen. Im Vakuum ist ein stetiger Verlauf zu niedrigen Energien nach der Moleküllflussunterbrechung zu erkennen. Im Gegensatz dazu wird an der selben Stelle bei der Messung an Luft eine sprunghafte Verschiebung der Energie beobachtet. Wie bereits in Kap. 2.2.2 ausführlich berichtet ist dieses abrupte Verhalten mit der Veränderung der Umgebung der Moleküle durch das Wasser zu erklären.

Im Vakuum dagegen findet die Moleküldeposition unter konstanten Bedingungen statt und das langsamen Abklingen entspricht dem Agglomerationprozess. Beim Aufdampfen der Moleküle bleibt die Faser wegen des großen Abstandes zur Moleküllstrahlquelle stets bei Raumtemperatur. Nach dem Auftreffen der Moleküle auf der Oberfläche bewegen sich diese sehr viel langsamer zu Inseln zusammen, was die langsame Rotverschiebung bzw. die langsames Veränderung der spektralen Form erklärt. Die Agglomeration verläuft generell sehr viel langsamer obwohl in etwa die gleiche Anzahl an Molekülen auf der Fasertaille vorhanden ist.

Aus den Graphen kann zudem entnommen werden, dass die Peakenergien der Vakuummessung stets höher liegen, und zwar um mindestens 0,02 eV. Eine mögliche Erklärung der systematischen Verschiebung ist zum Einen der Einfluss der Temperatur und zum Anderen der Einfluss des umgebenden Wassers auf die PTCDA-Moleküle.

Der Zusammenhang mit der Temperatur könnte mit einer phononischen Verbreiterung der molekularen Übergänge erklärt werden. Aufgrund der höheren Temperatur verschiebt sich die mittlere Position des Moleküls im anharmonischen Potential der Wechselwirkung zwischen Faser und Molekül, was eine Erniedrigung der Energie zur Folge haben kann.

Zusätzlich kann aus den Daten eine Tendenz zu schmäleren Peakbreiten im Vakuum im Gegensatz zu den Peakbreiten an Luft beobachtet werden, was ebenfalls durch die Temperaturabhängigkeit der phononischen Verbreiterung erklärt werden kann.

4.2.3 Einfluss der Molekülzahl

Es wurden zwei Messungen im Vakuum unter unterschiedlichen Bedingungen und mit unterschiedlichen Spektrometereinstellungen durchgeführt, die miteinander verglichen werden sollen. Dafür wurde die Lage von \(\text{Peak}_1 \) bei der ersten (Vakuum alt) und zweiten Messung (Vakuum neu) als Funktion der Zeit in Abb. 4.5 aufgetragen. Um eine bessere Darstellung des Verlaufs der Energieverschiebung am Anfang der Agglomeration zu erhalten, wurden lediglich die Daten der ersten vier Stunden aufgetragen.

Bei der ersten Messung wurden etwa halb soviele Moleküle \((N_{\text{alt}} = 2,04 \cdot 10^6)\) aufgedampft als bei der zweiten \((N_{\text{neu}} = 4,7 \cdot 10^6)\). Anfangs ist für die „Vakuum alt“-Messung ein flacher Abfall zu niedrigeren Energien zu

In der zweiten Messung werden im Verhältnis mehr Moleküle auf die Faser aufgebracht. Diese haben kleinere Abstände zueinander und fügen sich zu Inseln zusammen. Im Gegensatz dazu müssen wenige Moleküle eine größere Strecke zurücklegen, um sich mit einem anderen Molekül zu bilden. Aufgrund der gleichen Fasertaillendimensionen benötigen die Moleküle im Mittel dieselbe Zeit, um die Inseln zu bilden. Nach der Inselbildung, oder auch währenddessen, beginnt die Stapelbildung, die zu starken Formveränderungen der Spektren führt. Das Monomerspektrum geht in den beiden Messungen etwa zur gleichen Zeit in ein Dimerspektrum über. In der ersten Messung trägt die wesentlich geringere Molekulanzahl zur kleineren Energieverschiebung bei, die insgesamt nur 6 meV beträgt, wohingegen in der zweiten Messung die Verschiebung 31 meV beträgt.

Abbildung 4.5: Graphische Darstellung des zeitlichen Verlaufs der Verschiebung der Peak1-Maxima der beiden Vakuummessungen. In der ersten Messung (Vakuum alt) wurden 2,2 mal weniger Moleküle aufgedampft als bei der zweiten (Vakuum neu), weshalb dort eine wesentlich kleinere Verschiebung der Energie stattfindet.
4.2.4 Faser säubern

Ein Ziel ist es, mit der gleichen Faser in der Vakuumkammer mehrere Experimente durchführen zu können, ohne die Kammer dafür öffnen zu müssen. Dies kann nur erfolgen, wenn die Faser nach jeder abgeschlossenen Messung wieder von den Molekülen befreit wird. Eine Möglichkeit besteht darin die Faser mittels eines Laserstrahles zu erhitzten und somit die Moleküle abzudampfen. Dafür muss die Laserwellenlänge so gewählt werden, dass die Moleküle nicht angeregt werden, da dies nicht nur zu einem Abdampfprozess, sondern auch zu einem Bleichprozess führen könnte.

Zum Säubern der Faser soll ein fasergekoppelter, leistungsvariabler Diode-Laser (780 nm) verwendet werden. Die Laserleistung muss genau eingestellt werden, da bei zu hoher Leistung die Faser zerstört werden kann. Momentan werden Untersuchungen zur Ermittlung dieser optimalen Laserleistung angestellt, um die Moleküle von der Faseroberfläche zu entfernen.
Zusammenfassung und Ausblick

Beim Vergleich der Messungen im Vakuum mit denen an Raumluft konnten eine Reihe von Vorzügen ausgemacht werden. Es konnte eine Bedeckung von 0,02 % einer geschlossenen Monolage auf der Faseroberfläche nachgewiesen werden, was einer Verbesserung um einen Faktor 3,4 im Vergleich zu der Messung an Raumluft entspricht. Außerdem findet die Agglomerationsphase im Vakuum auf einer wesentlich größeren Zeitskala (ca. 71 Stunden) als bei Raumluft statt. Dabei wurden aus der Dynamik der molekularen Prozesse Rückschlüsse auf den Einfluss der Wasserfilme auf der Faseroberfläche gezogen.

Zudem wurde bei den Messungen im Vakuum ein weiterer Absorptionspeak bei kleineren Energien beobachtet. Diese Struktur konnte ebenso dynamisch aufgelöst werden und ist auf die Anwesenheit von Ladungen auf der Faseroberfläche zurückzuführen.

Die Vakuumapparatur wurde so konzipiert und aufgebaut, dass es möglich
ist, weitere Experimente durchzuführen. Ultradünnene Glasfasern zeigen eine stabile und reproduzierbare Sammeleffizienz für die Fluoreszenz der auf Oberflächen adsorbierten Moleküle. Insbesondere kann ein Anteil von 20 % der gesamten emittierten Strahlung in der Fasermode zurückgeführt werden, wobei 10 % in jede Richtung der Faser propagieren. Dadurch eröffnet sich die Möglichkeit, gleichzeitige Messungen der Absorbanz und der Fluoreszenz durchzuführen und dabei quantitative und komplementäre Information über molekulare Prozesse zu erlangen.

Die hohe Empfindlichkeit unserer Methode verspricht außerdem, den Nachweis einzelner Moleküle in kryogener Umgebung zu erlauben.
Anhang A

Komponenten des Vakuumsystems

Abbildung A.1: Schematische Darstellung der Vakuumapparatur in der Ansicht von der Seite (a) und von oben (b). Die Positionen können Tabelle A.1 entnommen werden.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Flansch</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DN200CF</td>
<td>Deckel vorne</td>
<td>Schließen der Hauptkammer. Spezialanfertigung mit drei weiteren Flanschen (2),(3),(4).</td>
</tr>
<tr>
<td>2</td>
<td>DN35CF</td>
<td>Viewport</td>
<td>Einstrahlung von Laserlicht entlang der Kammerachse.</td>
</tr>
<tr>
<td>3</td>
<td>DN16CF</td>
<td>Swagelok-Adapter</td>
<td>Ein- und Ausschleusen der Faser durch einem Teflonkegel, indem dieser in der Swagelokverschraubung gequetscht wird.</td>
</tr>
<tr>
<td>4</td>
<td>DN16CF</td>
<td>Blindflansch</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DN35CF</td>
<td>Drehdurchführung</td>
<td>Drehbewegung der QCM in den und aus dem Molekülstrahl.</td>
</tr>
<tr>
<td>6</td>
<td>DN63CF</td>
<td>Viewport</td>
<td>Eintritt eines Laserstrahles und Beleuchtung der ultradünnen Glasfaser zur Aufnahme mit der Kamera.</td>
</tr>
<tr>
<td>7</td>
<td>DN63CF</td>
<td>Blindflansch</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DN16CF</td>
<td>Drehdurchführung</td>
<td>Drehbewegung des Shutter zum Blockieren des Molekülstrahles.</td>
</tr>
<tr>
<td>9</td>
<td>DN200CF/35CF</td>
<td>Reduzierflansch</td>
<td>Schließen der Kammer und Herstellung einer Verbindung mit der Ofenkammer.</td>
</tr>
<tr>
<td>10</td>
<td>DN100CF</td>
<td>Turbo-</td>
<td>Evakuierung der Hauptkammer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>molekular-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pumppe</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DN35CF</td>
<td>Vakuummeter</td>
<td>Messung des Kammerdruckes.</td>
</tr>
<tr>
<td>12</td>
<td>DN63CF</td>
<td>Viewport</td>
<td>siehe (5)</td>
</tr>
<tr>
<td>13</td>
<td>DN35CF</td>
<td>BNC-Adapter</td>
<td>Verbindung der QCM mit der elektronischen Einheit auf der Atmosphärenseite.</td>
</tr>
<tr>
<td>14</td>
<td>DN63CF</td>
<td>Swagelok-</td>
<td>Multimodefaserausgang.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adapter</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DN63CF</td>
<td>xy-Stage,</td>
<td>Veränderung der Position der Multimodefaser in der Kammer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lineardurchführung</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DN63CF</td>
<td>Re-Entrant</td>
<td>Atmosphärenseitige Befestigung des Objektiv-Kamera-Ensembles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flansch (Spezialanfertigung)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DN35CF</td>
<td>Verbindungsstück</td>
<td>Verbindung des hinteren Kammerdeckels mit dem Pneumatikventil.</td>
</tr>
<tr>
<td>18</td>
<td>DN35CF</td>
<td>Pneumatikventil</td>
<td>Trennung der Haupt- von der Ofenkammer.</td>
</tr>
<tr>
<td>Nr.</td>
<td>Flansch</td>
<td>Bezeichnung</td>
<td>Funktion</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>DN35CF</td>
<td>Blende</td>
<td>Dichtung und Kollimator für den Molekulstrahl.</td>
</tr>
<tr>
<td>21</td>
<td>DN63CF</td>
<td>T-Stück</td>
<td>Enthält die Knudsen-Zelle.</td>
</tr>
<tr>
<td>22</td>
<td>DN35CF</td>
<td>Knudsen-Zelle</td>
<td>Erzeugung des Molekulstrahles.</td>
</tr>
<tr>
<td>23</td>
<td>DN63CF</td>
<td>Reduzierkreuz</td>
<td>Verbindung zur Turbomolekularpumpe. Messung an einem Abgang des Ofenkammerdruckes.</td>
</tr>
</tbody>
</table>

Tabelle A.1: Komponenten der Haupt- und Ofenkammer sowie deren Funktionen
<table>
<thead>
<tr>
<th>Komponente</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuumkammer inkl. Deckel</td>
<td>Vacom Vakuum Komponenten & Mess-technik GmbH</td>
</tr>
<tr>
<td>Vakuumkomponenten</td>
<td>Vacom Vakuum Komponenten & Mess-technik GmbH, Trinos Vakuum-Systeme GmbH</td>
</tr>
<tr>
<td>Re-Entrant Viewport</td>
<td>Vacom Vakuum Komponenten & Mess-technik GmbH</td>
</tr>
<tr>
<td>Dreh-, Lineardurchführungen</td>
<td>LewVac LLP</td>
</tr>
<tr>
<td>XY-Manipulator</td>
<td>Mewasa Flex GmbH</td>
</tr>
<tr>
<td>Turbomolekularpumpen</td>
<td>Pfeiffer Vacuum GmbH</td>
</tr>
<tr>
<td>Vakuummeter</td>
<td>Pfeiffer Vacuum GmbH</td>
</tr>
<tr>
<td>Scroll-Vakuum-pumpen</td>
<td>Oerlikon Leybold Vacuum GmbH</td>
</tr>
<tr>
<td>Vakuumventile</td>
<td>Oerlikon Leybold Vacuum GmbH</td>
</tr>
<tr>
<td>Knudsen-Zelle</td>
<td>Chell Instruments</td>
</tr>
<tr>
<td>QCM + Monitor</td>
<td>Schaefer Technologie GmbH</td>
</tr>
<tr>
<td>Infinitube</td>
<td>Infinity Photo-Optical GmbH</td>
</tr>
<tr>
<td>Kamera</td>
<td>Allied Vision Technologies GmbH</td>
</tr>
<tr>
<td>Mikroskopobjektiv</td>
<td>Mitutoyo Messgeräte GmbH</td>
</tr>
<tr>
<td>Bornitridtiegel</td>
<td>Testbourne Ltd</td>
</tr>
</tbody>
</table>

Tabelle A.2: Hersteller der verwendeten Komponenten
A.1 Bemaßung des Vakuumsystems

ANHANG A. KOMPONENTEN DES VAKUUMSYSTEMS
Literaturverzeichnis

LITERATURVERZEICHNIS

[38] W. Umrah, Grundlagen der Vakuumtechnik, Leybold Vakuum GmbH, Köln (1997)

http://www.jkrieger.de/download/gasvakuuman.pdf

[40] Pfeiffer Vacuum, Arbeiten mit Turbopumpen, Einführung in die Hoch- und Ultrahochvakuum-Erzeugung

[42] R. Wegerhoff, O. Weidlich und M. Kässens, Basics of Light Microscopy and Imaging, Olympus, Git Verlag
http://www.microscopy.olympus.eu/microscopes/About_Microscopy_7436.htm

