Atominstitut
> Zum Inhalt

KONTAKT

Gruppenleiter:

Ass. Prof. Dr. Peter Rabl
Tel.: +43-1-58801-141830
Raumnummer: DB 06 C18

Sekretariat:

Fr. Sonja Schuh
Tel.: +43-1-58801-142101
Fax.: +43-1-58801-14299
Raumnummer: DB 06 A12

TU Wien - Atominstitut
Wiedner Hauptstraße 8-10,
Turm B (gelb), 6.OG,
1040 Wien,
Austria

   

Quantum Optics Theory

The development of laser cooling and trapping techniques for atoms enabled us for the first time to study and fully control individual quantum systems in the lab. Apart from progressively  refined tests of the laws of quantum mechanics these capabilities also provide us with the basis  for new, quantum-enabled technologies, such as quantum computers, quantum simulators or enhanced sensors.  In recent years a similar level of control has also be obtained for artificial and macroscopic quantum systems, like superconducting quantum circuits or nanomechanical resonators. 

In our research group we are interested in quantum optical phenomena at the crossover between the microscopic and the macroscopic world and potential applications of coherent solid state and hybrid quantum systems for future quantum technologies.

  

Current research topics:

• Ultra-strong coupling effects in multi-qubit circuit QED. 

• Defect-phonon interactions and phonon quantum networks in diamond. 

• PT-symmetry breaking and exceptional point phenomena in nanomechanical and other microscopic quantum systems.

• Strong-coupling phenomena and multi-photon bound states in waveguide QED.

• Preparation and verification of macroscopic quantum superpositions. 

 

Selected publications:

Phonon networks with SiV centers in diamond waveguides
M.-A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, arXiv:1801.01904 (2018).
https://arxiv.org/abs/1801.01904

Cavity quantum electrodynamics in the non-perturbative regime
D. De Bernardis, T. Jaako, and P. Rabl, arXiv:1712.00015 (2017).
https://arxiv.org/abs/1712.00015

Intra-city quantum communication via thermal microwave networks
Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, Phys. Rev. X 7, 011035 (2017). 
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.011035

Strong coupling between atoms and slow-light Cherenkov photons
G. Calajo and P. Rabl, Phys. Rev. A 95, 043824 (2017). 
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.043824

PT-symmetry breaking in the steady state of microscopic gain-loss systems
K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, New J. Phys. 18, 095003 (2016).
http://iopscience.iop.org/article/10.1088/1367-2630/18/9/095003

Quantum technologies with hybrid systems
G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, PNAS 112, 3866 (2015).
http://www.pnas.org/content/112/13/3866

General dynamical description of quasi-adiabatically encircling exceptional points
T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, and P. Rabl, Phys. Rev. A 92, 052124 (2015).
http://link.aps.org/doi/10.1103/PhysRevA.92.052124

Probing macroscopic realism via Ramsey correlations measurements
A. Asadian, C. Brukner, and P. Rabl, Phys. Rev. Lett. 112, 190402 (2014).
http://link.aps.org/doi/10.1103/PhysRevLett.112.190402

Implementation of the Dicke lattice model in hybrid quantum system arrays
L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, P. Rabl, Phys. Rev. Lett. 113, 023603 (2014).
http://link.aps.org/doi/10.1103/PhysRevLett.113.023603

Optomechanical quantum information processing with photons and phonons, 
K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603 (2012). 
http://link.aps.org/doi/10.1103/PhysRevLett.109.013603