Quantum Optics Theory
The development of laser cooling and trapping techniques for atoms enabled us for the first time to study and fully control individual quantum systems in the lab. Apart from progressively refined tests of the laws of quantum mechanics these capabilities also provide us with the basis for new, quantum-enabled technologies, such as quantum computers, quantum simulators or enhanced sensors. In recent years a similar level of control has also be obtained for artificial and macroscopic quantum systems, like superconducting quantum circuits or nanomechanical resonators.
In our research group we are interested in quantum optical phenomena at the crossover between the microscopic and the macroscopic world and potential applications of coherent solid state and hybrid quantum systems for future quantum technologies.
Current research topics:
• Ultra-strong coupling effects in multi-qubit circuit QED.
• Defect-phonon interactions and phonon quantum networks in diamond.
• PT-symmetry breaking and exceptional point phenomena in nanomechanical and other microscopic quantum systems.
• Strong-coupling phenomena and multi-photon bound states in waveguide QED.
• Preparation and verification of macroscopic quantum superpositions.
Selected publications:
Thermodynamics of ultrastrongly coupled light-matter systems,
P. Pilar, D. De Bernardis, and P. Rabl, arXiv:2003.11556.
https://arxiv.org/abs/2003.11556
Emergence of PT-symmetry breaking in open quantum systems,
J. Huber, P. Kirton, S. Rotter, and P. Rabl, arXiv:2003.02265.
https://arxiv.org/abs/2003.02265
Environment-Induced Rabi Oscillations in the Optomechanical Boson-Boson Model,
Y. Minoguchi, P. Kirton, and P. Rabl, arXiv:1904.02164.
https://arxiv.org/abs/1904.02164
Active energy transport and the role of symmetry breaking in microscopic power grids,
J. Huber and P. Rabl, Phys. Rev. A 100, 012129 (2019).
https://doi.org/10.1103/PhysRevA.100.012129
Quantum acousto-optic control of light-matter interactions in nanophotonic networks,
G. Calajo, M. J. A. Schuetz, H. Pichler, M. D. Lukin, P. Schneeweiss, J. Volz, and P. Rabl,
Phys. Rev. A 99, 053852 (2019).
https://doi.org/10.1103/PhysRevA.99.053852
Breakdown of gauge invariance in ultrastrong-coupling cavity QED,
D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl, Phys. Rev. A 98, 053819 (2018).
https://doi.org/10.1103/PhysRevA.98.053819
Cavity quantum electrodynamics in the non-perturbative regime,
D. De Bernardis, T. Jaako, and P. Rabl, Phys. Rev. A 97, 043820 (2018).
https://doi.org/10.1103/PhysRevA.97.043820
Phonon networks with SiV centers in diamond waveguides,
M.-A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, arXiv:1801.01904 (2018).
https://arxiv.org/abs/1801.01904
Intra-city quantum communication via thermal microwave networks,
Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, Phys. Rev. X 7, 011035 (2017).
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.011035
Quantum technologies with hybrid systems,
G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, PNAS 112, 3866 (2015).
https://doi.org/10.1073/pnas.1419326112
Cavity quantum electrodynamics in the non-perturbative regime,
D. De Bernardis, T. Jaako, and P. Rabl, Phys. Rev. A 97, 043820 (2018).
https://doi.org/10.1103/PhysRevA.97.043820
Phonon networks with SiV centers in diamond waveguides,
M.-A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, Phys. Rev. Lett. 120, 213603 (2018).
https://doi.org/10.1103/PhysRevLett.120.213603
Intra-city quantum communication via thermal microwave networks,
Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, Phys. Rev. X 7, 011035 (2017).
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.011035
Strong coupling between atoms and slow-light Cherenkov photons,
G. Calajo and P. Rabl, Phys. Rev. A 95, 043824 (2017).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.043824
Ultrastrong-coupling phenomena beyond the Dicke model,
T. Jaako, Z.-L.Xiang, J. J. Garcia-Ripoll, and P. Rabl, Phys. Rev. A 94, 033850 (2016).
https://doi.org/10.1088/1367-2630/18/9/095003
PT-symmetry breaking in the steady state of microscopic gain-loss systems,
K. V. Kepesidis, T. J. Milburn, K. G. Makris, S. Rotter, and P. Rabl, New J. Phys. 18, 095003 (2016).
http://iopscience.iop.org/article/10.1088/1367-2630/18/9/095003
Quantum technologies with hybrid systems,
G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, PNAS 112, 3866 (2015).
http://www.pnas.org/content/112/13/3866
General dynamical description of quasi-adiabatically encircling exceptional points,
T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, and P. Rabl, Phys. Rev. A 92, 052124 (2015).
http://link.aps.org/doi/10.1103/PhysRevA.92.052124
Probing macroscopic realism via Ramsey correlations measurements,
A. Asadian, C. Brukner, and P. Rabl, Phys. Rev. Lett. 112, 190402 (2014).
http://link.aps.org/doi/10.1103/PhysRevLett.112.190402
Implementation of the Dicke lattice model in hybrid quantum system arrays,
L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, Phys. Rev. Lett. 113, 023603 (2014).
http://link.aps.org/doi/10.1103/PhysRevLett.113.023603